首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的 制备替莫唑胺和索拉非尼PLGA纳米粒,并对其粒径、形貌、稳定性及体外释放进行考察,探讨其是否可用于抗脑胶质瘤的体内体外研究。方法 纳米沉淀法制备替莫唑胺索拉和索拉非尼PLGA纳米粒,测定粒径、电位、形貌、包封率和载药量以及稳定性。结果 所得纳米粒的平均粒径为(106.71±0.21)nm、多分散系数为(0.24±0.05),电位(-27.30±1.20)mV,纳米粒呈规则的球状均匀分布,大小均一,表面光滑;PLGA纳米粒中替莫唑胺的包封率及载药量分别为(75.89±3.12)%、(3.61±0.78)%;索拉非尼的包封率及载药率分别为(48.61±1.20)%、(1.50±0.98)%。结论 采用纳米沉淀法制备的PLGA纳米粒,呈球形形貌、粒径分布均匀、有良好的稳定性,可用于抗脑胶质瘤的体内体外研究。  相似文献   

2.
包裹多烯紫杉醇PLGA-PEG纳米粒的制备及体外释放度考察   总被引:1,自引:0,他引:1  
目的制备包裹多烯紫杉醇PLGA-PEG纳米粒(DTX-NPs)并评价其体外释放行为。方法合成高分子聚合物PLGA-PEG-COOH并表征;以其作为载体,复乳溶剂挥发法制备隐形纳米粒;动态光散射粒径仪和透射电镜测定DTX-NPs的粒径分布、zeta电位及表面形态;采用HPLC法测定DTX-NPs的包封率及载药量;以pH 7.4磷酸缓冲盐溶液(PBS)作为释放介质,考察DTX-NPs的体外释放行为。结果 DTX-NPs平均粒径为(138.8±1.01)nm,zeta电位为(-13.74±3.54)mV,包封率(99.41%±0.29%),载药量(2.47±0.02)μg/mg,24 h突释量为49%。结论 DTX-NPs制备工艺简便可控,结果稳定,且其体外释放行为具有缓释性,能够在血液中长时间滞留,具有良好的应用前景,值得进一步研究。  相似文献   

3.
目的 比较载替莫唑胺聚氰基丙烯酸正丁酯纳米粒( TMZ-PBCA-NP)的不同制备方法,确定最佳制备工艺.方法 以α-氰基丙烯酸正丁酯(BCA)为载体,分别采用乳化聚合法和界面聚合法制备TMZ-PBCA-NP,加以吐温-80(T-80)进行表面修饰,并通过zeta电位仪检测纳米粒粒径和电位、透射电镜观察纳米粒形态、紫外分光光度计测定各自的包封率和载药量.结果 乳化聚合法制备的TMZ-PBCA-NP平均粒径(135.8±11.3)nm,表面电位(-24.8±2.2 )mV,包封率(44.23±2.04)%,载药量(2.80±0.05)% ;界面聚合法制得的载药纳米粒平均粒径(175.4±10.2)nm,表面电位(-18.3±3.6 )mV,包封率(44.35±2.58)%,载药量(2.31±0.47)%.透射电镜下观察两种方法所制备的纳米粒大小均较为均匀,粒子间无明显聚集.结论 采用乳化聚合法制备TMZ-PBCA-NP效果较优于界面聚合法.  相似文献   

4.
目的 优化制备包裹反义寡核苷酸a-氰基丙烯酸正丁酯纳米粒(ASODN in NP)并考察稳定性.方法 以氰基丙烯酸正丁酯(butyleyanoacrylate,BCA)为载药材料,采用界面聚合法制备ASODN in NP;在单因素考察的基础上,采用正交设计优化处方和制备工艺;用透射电镜观察其形态;马尔文激光粒度分析仪测定粒径;高效液相色谱法测定载药量和包封率;用含7 mol/L尿素的20%聚丙烯酰胺凝胶电泳考察载药纳米粒在体外血清中的稳定性.结果 按优化工艺条件,制得的载药纳米粒,其形态规整、无黏连、大小均匀,平均粒径为94.9 nm,包封率和载药量分别为 96.7%、10.1%,在体外血清中稳定性好并优于传统的吸附法制备的纳米粒.结论 本实验制备的ASODN in NP具有较好的稳定性,较高包封率和载药量.  相似文献   

5.
目的制备硫酸长春新碱(VCR)聚乳酸羟基乙酸共聚物(PLGA)纳米粒(NPs),研究其理化性质以及体外抗肿瘤活性。方法采用改良的复乳溶剂挥发法制备负载硫酸长春新碱的PLGA纳米粒,以透射电子显微镜观察纳米粒的形态,以激光粒度仪测定纳米粒的粒径和Zeta电位,以透析袋法研究其体外释放规律,以人乳腺癌细胞(MCF-7)为细胞模型,通过MTT试验考察载药纳米粒的细胞毒性。结果制备的VCR-PLGA NPs外观呈球形,平均粒径为(145.81±4.72)nm,Zeta电位为(-17.50±1.92)mV,包封率为(56.81±3.17)%,载药量为(2.79±0.18)%,体外释放规律符合双相动力学方程:Q=100-(72.19e-0.164 3 t+29.26e-0.002 971 t)(R2=0.996 8)。载药纳米粒与原药相比可以增加细胞摄取而引起细胞毒性。结论初步建立了负载硫酸长春新碱的PLGA纳米粒系统,为体内抗肿瘤活性研究提供了依据。  相似文献   

6.
目的:采用单因素试验与正交试验优化转铁蛋白(Tf)修饰的负载三七皂苷R1的PEG-PLGA纳米粒(R1@Tf-PEG-PLGA NPs)的制备工艺,并对其质量进行评价。方法:采用纳米沉淀法制备负载三七皂苷R1的PEG-PLGA纳米粒(R1@PEG-PLGA NPs),通过单因素试验与正交试验优选其最佳制备条件。将Tf共价偶联在纳米粒表面,制得R1@Tf-PEG-PLGA NPs。以Tf接枝率为指标,通过单因素试验优选其制备条件。采用激光粒度仪和透射电子显微镜对纳米粒进行形态表征及理化参数测定。采用透析法进行纳米粒体外释药研究,并对释药过程进行动力学模型拟合。结果:制得的R1@Tf-PEG-PLGA NPs形态圆整、分散性良好,粒径(153.50±2.01)nm,多分散指数0.11±0.01,Zeta电位(-17.57±1.45)mV,包封率(50.32±0.86)%,载药量(24.26±0.18)%,蛋白接枝率(42.09±0.62)%。药物24 h累积释放率80%,体外释放过程符合Riger-Peppas动力学模型。结论:制得的R1@Tf-PEG-PLGA NPs粒径均一,包封率与载药量适宜,能够延缓药物的释放。  相似文献   

7.
胰岛素多肽固体脂质纳米粒的制备与理化性质研究   总被引:3,自引:0,他引:3  
目的该课题选用水溶性多肽类药物,以生物相容性好的脂质为主体材料,制备固体脂质纳米粒。方法采用溶剂扩散法制备单硬脂酸甘油脂纳米粒,以胰岛素(ISULIN)为模型药物。研究纳米粒的理化性质,以微粒粒度与zeta电位测定仪测定其粒径分布、表面电位;高效液相法测定了药物包封率;考察载药纳米粒的体外释放特性;以4种不同比例的硬脂酸、油酸和单硬脂酸甘油脂,通过溶剂扩散法制备混合脂质纳米粒,考察混合脂质纳米粒的理化性质、包封率和体外释放特性。结果用水性溶剂扩散法可简便快速制备得到单硬脂酸甘油酷固体脂质纳米粒,纳米粒粒径呈单峰分布,体均粒径(435.3±121.6)nm,表面电位-(20.7±1.6)mV。采用HPLC测定,药物的包封率68.2%。体外释放研究结果显示,INSULIN-SLN在前8h快速释放了纳米粒所载药物的28.4%,随后每天以3.7%的速率持续释放。结论采用单硬脂酸甘油醋、硬脂酸、油酸混合脂质处方,并不显著影响纳米粒的粒径、表面电位和药物的包封率。油酸的加入,可在一定程度上增加药物的释放。  相似文献   

8.
[目的]以单硬脂酸甘油酯为载体材料制备姜黄素固体脂质纳米粒及其体外释放行为的研究。[方法]采用乳化蒸发-低温固化法制备姜黄素固体脂质纳米粒,高速离心法测其包封率,激光粒径仪测定其粒径、电位,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中姜黄素的体外释放行为。[结果]姜黄素固体脂质纳米粒的平均粒径为(89.24±2.06)nm,Zeta电位为(-18.77±1.27)m V,药物平均包封率为(89.55±1.84)%,DSC结果表明其理化性质稳定可靠,体外12 h累计释放率为(43.12±1.02)%。[结论]制备的姜黄素固体脂质纳米粒粒径小且分布均匀,具有良好的缓释作用。  相似文献   

9.
目的 探讨壳聚糖-组织因子小干扰RNA(TFsiRNA)纳米粒制备方法并研究其特性.方法 采用三聚磷酸钠(TPP)离子胶凝法分别制备包封型和吸附型壳聚糖-TPP-TFsiRNA纳米粒.检测纳米粒平均粒径和Zeta电位、载药率,并分析血清稳定性、体外生物活性及其细胞毒性.结果 两种纳米粒粒径均小于550 nm,粒径大小主要取决于壳聚糖类型、分子量及其浓度.酸碱度、壳聚糖TPP质量比也影响粒径大小.包封型纳米粒siRNA载药率为100%.壳聚糖-TPP-TFsiRNA纳米粒中的siRNA在5%血清中孵育24 h开始降解,60 h完全降解;50%血清孵育6 h保持完整,48 h完全降解.结论 壳聚糖纳米粒可能成为有效的siRNA转运载体.  相似文献   

10.
目的:制备雌二醇-聚氰基丙烯酸正丁酯纳米粒(ES-PBCA-NP).方法:以聚氰基丙烯酸正丁酯(PBCA)为载体,采用乳化聚合法制备ES-PBCA-NP.采用U5(53)均匀实验设计优化制备条件.用激光粒度分析仪测定纳米粒的粒径分布及Zeta电位;用原子力显微镜观察其形态;HPLC测定载药量及包封率.结果与结论:综合考虑选用二乙胺乙基葡聚糖(DEAE-Dextran)作为实验用表面活性剂,制备优化条件:pH 2.0,稳定剂和表面修饰剂质量比为1:1,BCA用量终质量浓度为12 g/L.以上述条件制备的纳米粒,稳定性好、形态规整、大小均匀,粒径(115±7)nm,Zeta电位为(43.6±3.2)mV,载药量为61 mg/g,包封率为78.0%,适合作为雌二醇的给药载体.  相似文献   

11.
陈莹  李岩  蔡爽 《中国医药导报》2013,10(17):13-15,30
目的制备冬凌草甲素长循环固体脂质纳米粒(ORI-LSLN),并考察其理化性质和对人胃癌SGC-7901细胞的抑制作用。方法采用熔融均质法制备ORI-LSLN,并对其形态、粒径分布、电位、包封率和载药量等性质进行考察。以冬凌草甲素溶液(ORI)、冬凌草甲素固体脂质纳米粒(ORI-SLN)为对照,进行ORI-LSLN体外释放试验。采用MTT法测定ORI-LSLN对人胃癌SGC-7901细胞的抑制作用。结果制备的ORI-LSLN呈类球形,平均粒径112 nm,Zeta电位为-31.6 mV,包封率为90.4%,载药量为5.1%。体外释放结果表明,ORI-SLN和ORI-LSLN在释放初期并无显著区别,后期ORI-SLN释放较快,24 h基本释放完全,而ORI-SLN则需要36 h才完全释放,表现了更好的缓释效果。ORI-LSLN对人胃癌SGC-7901细胞具有较强的毒性作用。结论熔融均质法制备的ORI-LSLN包封率高、载药量大,工艺易于工业化,与ORI-SLN相比,ORI-LSLN更具有较好的抗癌药物缓释制剂潜力。  相似文献   

12.
目的制备聚乙二醇(polyethylene glycol,PEG)包裹表阿霉素脂质体,对其药剂学性质和活性进行评价。方法采用乳化溶剂挥发法制备聚乙二醇包裹表阿霉素的脂质体,用扫描电镜和透射电镜观察其形态,用激光纳米粒度仪测定粒径分布及Zeta电位、并对包封率、稳定性及体外释药特性进行研究,采用MMT法和S180小鼠模型评价体内外抗肿瘤活性。结果聚乙二醇包裹表阿霉素的脂质体的粒径为(231.4±2.0)nm,动电位为(-25.62±0.68)m V,包封率为(53.14±4.85)%,各项稳定性均有明显提高,体外释放缓慢,小鼠剂量可增加到6μmol/kg,给药间隔可延长至72 h,并显示比表阿霉素好的抗肿瘤活性。结论本实验获得了较理想的聚乙二醇包裹表阿霉素脂质体,体外释药符合长效制剂特征,血浆中稳定,具有p H敏感性,可改善表阿霉素用药安全性,延长药物作用时间。  相似文献   

13.
[目的]以丹酚酸B(salB)为模型药物制备立方液晶纳米粒,并对其大鼠在体肠吸收进行考察。[方法]采用高压均质法制备丹酚酸B立方液晶纳米粒,以粒径、包封率为指标进行处方优化;透射电镜观察其形态;单向灌流法考察其大鼠在体肠吸收。[结果]纳米粒平均粒径为(172.2±5)nm,Zeta电位为(-14.8±2)mV,包封率为(38.6±3)%。肠吸收实验表明丹酚酸B溶液与纳米粒在全肠段均有吸收,且在十二指肠吸收最好,纳米粒的大鼠小肠吸收优于丹酚酸B溶液(P0.05)。[结论]丹酚酸B立方液晶纳米粒能够促进其在大鼠小肠的吸收。  相似文献   

14.
目的:制备三肽序列精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)和细胞穿膜肽TAT共修饰紫杉醇(PTX)脂 质体(RGD/TAT-LP-PTX),对其理化性质进行表征,并研究脂质体与乳腺癌MCF-7细胞的亲和力和增殖抑制作用。方 法:采用薄膜分散法制备RGD/TAT-LP-PTX,考察脂质体的粒径、电位以及包封率;通过定量细胞摄取实验研究乳 腺癌MCF-7细胞对RGD/TAT-LP的摄取效率以及脂质体的摄取机制。定性共聚焦实验观察肿瘤细胞对脂质体的摄取。 MTT实验研究RGD/TAT-LP-PTX对乳腺癌MCF-7细胞的细胞毒性;构建乳腺癌MCF-7细胞肿瘤球模型,研究脂质体对 肿瘤球的穿透能力。结果:RGD/TAT-LP-PTX的粒径为(138.8±12.4) nm,电位为(25.85±2.75) mV,紫杉醇的包封率为 88.3%。细胞摄取实验结果显示:RGD/TAT-LP在孵育4 h时的摄取效率是2 h的1.79倍(P<0.05);乳腺癌MCF-7细胞在 与脂质体共同孵育4 h后对RGD/TAT-LP的摄取效率分别是TAT-LP,RGD-LP和LP的2.25倍、2.72倍和4.58倍(P<0.01); RGD/TAT-LP-PTX对乳腺癌MCF-7细胞的增殖抑制率随时间的延长而增长,RGD/TAT-LP-PTX在孵育48 h时对乳腺癌 MCF-7细胞的抑制率是24 h的1.78倍(P<0.05);在给予RGD/TAT-LP-PTX,TAT-LP-PTX,RGD-LP-PTX和LP-PTX四种 脂质体药物48 h后,RGD/TAT-LP-PTX组的抑制率是TAT-LP-PTX,RGD-LP-PTX和LP-PTX的1.65倍、1.82倍和2.55倍 (P<0.01)。RGD/TAT-LP对肿瘤球的穿透能力明显强于其他脂质体。结论:RGD和细胞穿膜肽TAT共修饰PTX脂质体能 够有效识别并穿透肿瘤细胞膜进入肿瘤细胞,是一种潜在高效的乳腺癌给药系统。  相似文献   

15.
目的 应用Box-Behnken实验设计,优化水飞蓟素固体脂质纳米粒的最佳处方。方法 采用三因素三水平Box- Behnken实验设计,以水飞蓟素为模型药物,采用乳化蒸发-低温固化法制备固体脂质纳米粒。利用效应曲面法对影响固体脂质纳米粒包封率、载药量和粒径的主要因素进行考察,以包封率、载药量和粒径为响应值,建立相应的二项式数学模型优化处方。结果 最优处方为固体脂质纳米粒中脂质单硬脂酸甘油酯量为5.05%,7.25% Poloxmer 188作为乳化剂,药物的量为15%。结论 采用Box-Behnken实验设计可用于水飞蓟素固体脂质纳米粒的处方优化筛选。  相似文献   

16.
目的 制备载天冬酰胺酶(asparaginase,AN)透明质酸-聚乙二醇[hyaluronic acid-graft-poly(ethylene glycol),HA-g-PEG]/α-环糊精(α-cyclodextrin,α-CD)纳米囊(HA-g-PEG/α-CD hollow nanocapsules loaded with asparaginase,AHAPs),并对其体外活性及稳定性进行初步考察.方法 采用自组装法制备AHAPs,测定AHAPs的最适温度、最适pH、粒径、zeta电位和包封率,并通过热稳定性、酸碱稳定性、抗胰蛋白酶水解能力、抗金属离子和有机化合物能力、血浆稳定性和贮存稳定性实验对游离AN与AHAPs的体外稳定性差异进行考察.通过荧光实验对AN与空白HA-g-PEG/α-CD纳米囊的相互作用进行研究.结果 AHAPs的最适温度为50℃,最适pH值为7.0,测得平均粒径为(424.53±7.25) nm,zeta电位为(-48.77±0.99) mV.经计算,AHAPs的平均包封率为(64.40±1.82)%.稳定性实验结果显示,AHAPs中AN的体外稳定性及活性明显优于游离AN,且部分实验结果差异具有统计学意义(P<0.05).荧光实验结果表明,AHAPs中AN生物活性的提高可能与AN和空白HA-g-PEG/α-CD纳米囊的相互作用引起蛋白质残基微环境和酶构象改变相关.结论 AHAPs不仅提高了AN的活性,而且明显增强了AN的体外稳定性.  相似文献   

17.
目的?以乳酸-羟基乙酸共聚物(PEG-PLGA)为载体,优化纳米沉淀法制备透明质酸修饰的葛根素PEG-PLGA纳米粒(HA/Pue-NPs),并对其体外性质进行初步评价。方法?以PEG-PLGA为载体材料,透明质酸为表面修饰剂,采用纳米沉淀法制备了透明质酸修饰的HA/Pue-NPs;应用正交实验设计优化处方,对其体外性质进行表征;并采用体外释药行为评价透明质酸修饰HA/Pue-NPs。结果?制备出的载药纳米粒外观呈球形,平均粒径、Zeta电位分别为(88.9±2.2)nm、(-21.9±0.54)mV,载药量及包封率分别为6.75%、78.52%。体外释药试验表明,载药纳米粒释药缓慢,24h的累计释放率为65.8%。结论?透明质酸修饰的葛根素PEG-PLGA纳米粒粒径大小均一,体外性质良好且具有一定的缓释特性。   相似文献   

18.
目的对王枣子乙素聚乳酸纳米粒制备工艺和含量测定方法进行研究,并对其进行质量评价。方法用自乳化溶剂扩散法制得王枣子乙素聚乳酸纳米粒,并对其粒径、形态、表面电位、包封率等进行研究。结果所得王枣子乙素聚乳酸纳米粒粒径分布均匀,平均粒径为(120±10.6)nm,Zeta电位为-17.6 mV,平均包封率为(90.38±1.08)%。结论聚乳酸纳米粒可作为王枣子乙素新型给药系统。  相似文献   

19.
目的 优化载药胶束的制备工艺,并对其稳定性进行考察. 方法 采用高效液相(HPLC)法测定紫杉醇(PTX)含量,以载药量、包封率、粒径为考察指标,通过单因素考察方法优化载药胶束的制备工艺. 结果优化工艺下制备的载PTX胶束载药量为(38.63 ± 0.42)%,包封率为(83.19 ± 1.23)%,粒径为(192.2 ± 0.5)nm,载PTX聚合物胶束一定条件下贮存10 d后,粒径与载药量无明显变化. 结论 该载药工艺简单可行,可用于载PTX聚合物胶束的制备,所制备的聚合物胶束短期贮存稳定.  相似文献   

20.
α-常春藤皂苷丙烯酸树脂L100纳米粒的制备及其体外评价   总被引:1,自引:0,他引:1  
目的制备和评价α-常春藤皂苷-丙烯酸树脂EudragitL100纳米粒(SPD.L100.NPs)。方法采用改良乳化一溶剂扩散法制备纳米粒,以粒径大小、包封率(EE)和多分散指数(PI)为指标,通过单因素试验和正交试验设计优化制备工艺。通过红外光谱、X射线衍射、差示扫描量热分析、体外释放试验等对纳米粒的相关性质进行评价。结果所制备的纳米粒外观圆整,平均粒径为(65.2±1.6)nm,EE为(99.13±0.20)%,PI值为0.384±0.008。药物在纳米粒中均被载体材料有效包裹,其体外释放具有显著的pH依赖性。结论采用改良乳化-溶剂扩散法可制备出包封率高、大小均匀的pH依赖性纳米粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号