首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]以单硬脂酸甘油酯为载体材料制备姜黄素固体脂质纳米粒及其体外释放行为的研究。[方法]采用乳化蒸发-低温固化法制备姜黄素固体脂质纳米粒,高速离心法测其包封率,激光粒径仪测定其粒径、电位,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中姜黄素的体外释放行为。[结果]姜黄素固体脂质纳米粒的平均粒径为(89.24±2.06)nm,Zeta电位为(-18.77±1.27)m V,药物平均包封率为(89.55±1.84)%,DSC结果表明其理化性质稳定可靠,体外12 h累计释放率为(43.12±1.02)%。[结论]制备的姜黄素固体脂质纳米粒粒径小且分布均匀,具有良好的缓释作用。  相似文献   

2.
目的为解决伊曲康唑(ITZ)的分散性,制备伊曲康唑固体脂质纳米粒(ITZ-SLN),并考察其体外释放规律。方法采用微乳法-低温固化法制备ITZ-SLN;用马尔文激光粒度仪测定纳米粒的Zeta电位与粒度分布,低温高速超滤离心分离SLN与未包封的药物,反相高效液相色谱法(RP-HPLC)测定包封率及其载药量,采用扩散法-超滤法测定纳米粒(ITZ-SLN)的体外释放行为。结果纳米粒的粒径为(15.23±2.10)nm,Zeta为(-22. 65±0.91)mV,包封率为(96.02±2.10)%,载药量为(0.15±0. 02)%,其体外释放规律符合一级释放动力学方程。结论该制剂处方设计和工艺方法可行,可达到缓释效果。  相似文献   

3.
[目的] 研究麦角甾苷眼用固体脂质纳米粒的制备方法及其体外释放的情况。[方法] 采用乳化蒸发-低温固化法制备麦角甾苷固体脂质纳米粒,超滤离心法测其包封率,并对其粒径、电位、进行进一步考察,用差示扫描量热仪(DSC)表征其性质,采用透析法考察固体脂质纳米粒中麦角甾苷的体外释放行为。[结果] 麦角甾苷固体脂质纳米粒的平均粒径为85.56 nm,Zeta 电位约为-20.97 mV,药物平均包封率为88.31 %,DSC 表明其理化性质稳定可靠,体外12 h 累计释放率62.46 %。[结论] 制备的麦角甾苷固体脂质纳米粒包封率较高,粒径小且分布均匀,有良好的缓释作用。  相似文献   

4.
目的制备双环醇固体脂质纳米粒并考察其理化性质。方法通过乳化蒸发-低温固化法制备双环醇固体脂质纳米粒,透射电镜下观察形态,激光粒度仪测定粒径大小和电位,用微柱离心法测定包封率,并以包封率作为指标,通过正交试验设计优选出最佳处方。结果按优化条件所制备的双环醇固体脂质纳米粒在透射电镜下观察呈类球形,大小分布均匀,平均粒径为(191.4±5.33)nm,Zeta电位为(-22.73±3.32)m V,平均包封率为(59.7±1.37)%。结论乳化蒸发-低温固化法适合用于制备双环醇固体脂质纳米粒。  相似文献   

5.
目的以乳化蒸发—低温固化法制备联苯双酯固体脂质纳米粒。方法在单因素考察的基础上以正交试验优化、筛选最佳处方和制备工艺。用透射电镜观察固体脂质纳米粒的形态,激光粒度仪测定Zeta电位和粒径大小,葡聚糖凝胶柱法测定其包封率。结果所制得的联苯双酯固体脂质纳米粒外观形态圆整,粒度分布均匀,平均粒径为(193±6)nm,电位为(-21.5±1.2)mV,包封率为(45.1±1.1)%。结论乳化蒸发—低温固化法适用于联苯双酯固体脂质纳米粒的制备。  相似文献   

6.
目的 制备具有缓释作用的和厚朴酚固体脂质纳米粒。方法 采用乳化蒸发-低温固化法制备和厚朴酚固体脂质纳米粒,通过正交试验对处方进行优化,并对其包封率、粒径、体外释放等进行考察。结果 制备的固体脂质纳米粒的平均粒径为159 nm,包封率为77.1%。结论 乳化蒸发-低温固化法可用于制备和厚朴酚固体脂质纳米粒。  相似文献   

7.
制备丹参酮ⅡA长循环固体脂质纳米粒(TA-LSLN)并考察其理化性质。方法:以乳化,溶剂挥发法制备丹参酮ⅡA固体脂质纳米粒,测定其粒径、Zeta电位和药物包封率,以透射电镜观察纳米粒形态,考察了纳米粒的稳定性,并进行TA-LSLN的体外释放试验。结果:纳米粒平均粒径为107.6nm,Zeta电位为-34.5mV,包封率为82.3%。4℃放置1个月粒径和包封率无变化。体外释药试验表明TA-LSLN开始阶段释放较快,10h时释放了41%,之后缓慢释放;体外释药结果符合Weibull方程。结论:制备的TA-LSLN平均粒径和包封率较为理想,能使药物缓慢释放。  相似文献   

8.
目的 应用Box-Behnken实验设计,优化水飞蓟素固体脂质纳米粒的最佳处方。方法 采用三因素三水平Box- Behnken实验设计,以水飞蓟素为模型药物,采用乳化蒸发-低温固化法制备固体脂质纳米粒。利用效应曲面法对影响固体脂质纳米粒包封率、载药量和粒径的主要因素进行考察,以包封率、载药量和粒径为响应值,建立相应的二项式数学模型优化处方。结果 最优处方为固体脂质纳米粒中脂质单硬脂酸甘油酯量为5.05%,7.25% Poloxmer 188作为乳化剂,药物的量为15%。结论 采用Box-Behnken实验设计可用于水飞蓟素固体脂质纳米粒的处方优化筛选。  相似文献   

9.
目的淫羊藿苷固体脂质纳米粒制备方法及处方研究并考察其体外释放情况。方法采用超声分散与高温融溶低温固化结合法制备淫羊藿苷固体脂质纳米粒,考察大豆卵磷脂、胆固醇、投药量、PEG-2000、F-68的用量对包封率、载药量的影响以确定出较优处方配比;用HPLC测定了淫羊藿苷溶液及固体脂质纳米粒在30%甲醇PBS溶液中的体外释放百分率。结果制得的淫羊藿苷固体脂质纳米粒包封率为(98.07±0.15)%,载药量为(6.47±0.14)%;在30%甲醇PBS溶液,淫羊藿苷溶液9 h释放99.97%;淫羊藿苷固体脂质纳米粒72 h累积释放89.75%。结论通过改进后的制备方法优化处方制得固体脂质纳米粒具有较高包封率和载药量,淫羊藿苷固体脂质纳米粒可使淫羊藿苷具有良好的缓释效果。  相似文献   

10.
[目的]制备黄芩素聚(乳酸-羟基乙酸)共聚物(PLGA)纳米粒,并对其理化性质、体外释药以及体外角膜细胞相容性进行研究。[方法]使用乳化溶剂挥发法制备黄芩素PLGA纳米粒,评价其性质和体外缓释效果,主要包括:纳米粒粒径,纳米粒包封率,药物载药量和体外缓释曲线等。采用细胞增殖实验评价黄芩素PLGA纳米粒的细胞毒性。[结果]黄芩素PLGA纳米粒粒径(92.5±2.35)nm、Zeta电位(-21.1±2.5)mV、包封率(92.5±2.35)%、载药量(23.12±1.45)%。体外缓释实验提示:突释阶段黄芩素释放率在1 d内达(8.37±0.31)%,缓释阶段纳米粒可稳定释放,在10 d时释放达(51.30±0.50)%,细胞增殖实验提示黄芩素PLGA纳米粒对细胞体外生长无不良影响,细胞相容性好。[结论]采用乳化溶剂挥发法制备的黄芩素PLGA纳米粒具有良好的缓释效应和良好的细胞相容性。  相似文献   

11.
装载肝素PLGA纳米粒的制备及体外细胞相容性研究   总被引:1,自引:0,他引:1  
目的 采用双次乳化法制备装载有肝素的PLGA纳米粒,并评价其体外缓释性能和细胞相容性.方法 ①使用双次乳化法制备PLGA-肝素纳米粒(PLGA-Hep NPs);②对PLGA-Hep纳米粒进行理化分析和体外缓释效果评价,主要指标有:纳米粒径分析、表面形态观察,测定药物载药量和绘制体外缓释曲线等;③采用细胞增殖实验评价PLGA-Hep纳米粒的细胞毒性.结果 ①所制备的PLGA-Hep纳米粒呈球形,纳米粒的粒径、Zeta电位和肝素载药量与初始肝素投入量相关,当肝素投入量为100 mg时,粒径平均大小为(184.8±3.0)nm,Zeta电位为(-20.24±0.83)mV,1mg PLGA-Hep纳米粒装载(48.7±2.3)μg肝素;②体外缓释试验提示:突释阶段肝素释放率在24 h内达(26.6±2.8)%,缓释阶段纳米粒可稳定释放,在14 d时释放达(54.9±1.9)%;③细胞增殖实验提示PLGA- Hep纳米粒对细胞体外生长无不良影响,细胞相容性好.结论 采用双次乳化法制备的PLGA-Hep纳米粒具有良好的缓释效应和良好的细胞相容性,显示了PLGA纳米粒在药物缓释领域的广泛应用前景.  相似文献   

12.
高压乳匀法制备中药固体脂质纳米粒   总被引:6,自引:0,他引:6  
目的采用高压乳匀法将中药有效成分包载于固体脂质纳米粒(SLN),并研究制备的纳米粒的主要性质。方法选择水飞蓟宾(SIL)和汉防己甲素(TET)为模型药物,采用高压乳匀法将其分别包载于SLN。在电镜下观察其形态,以粒度分析仪和Zeta电位分析仪测定其粒径和Zeta电位,用葡聚糖凝胶柱层析法和HPLC测定其包封率和载药量,还观察了SLN的稳定性。结果高压乳匀法制备的SIL-SLN呈球状,形态规则,平均粒径为(157±8)nm,Zeta电位为(-35.36±2.68)mV,包封率为95.64%,载药量为4.63%;TET-SLN呈片状存在,不规则,粒径较小,平均粒径为(47±3)nm,Zeta电位为(-32.99±2.54)mV,包封率为97.82%,载药量为4.76%。SIL-SLN和TET-SLN有较高稳定性。结论高压乳匀法适于制备包载中药的SLN。  相似文献   

13.
陈莹  李岩  蔡爽 《中国医药导报》2013,10(17):13-15,30
目的制备冬凌草甲素长循环固体脂质纳米粒(ORI-LSLN),并考察其理化性质和对人胃癌SGC-7901细胞的抑制作用。方法采用熔融均质法制备ORI-LSLN,并对其形态、粒径分布、电位、包封率和载药量等性质进行考察。以冬凌草甲素溶液(ORI)、冬凌草甲素固体脂质纳米粒(ORI-SLN)为对照,进行ORI-LSLN体外释放试验。采用MTT法测定ORI-LSLN对人胃癌SGC-7901细胞的抑制作用。结果制备的ORI-LSLN呈类球形,平均粒径112 nm,Zeta电位为-31.6 mV,包封率为90.4%,载药量为5.1%。体外释放结果表明,ORI-SLN和ORI-LSLN在释放初期并无显著区别,后期ORI-SLN释放较快,24 h基本释放完全,而ORI-SLN则需要36 h才完全释放,表现了更好的缓释效果。ORI-LSLN对人胃癌SGC-7901细胞具有较强的毒性作用。结论熔融均质法制备的ORI-LSLN包封率高、载药量大,工艺易于工业化,与ORI-SLN相比,ORI-LSLN更具有较好的抗癌药物缓释制剂潜力。  相似文献   

14.
制备空白牛血清白蛋白纳米粒,通过星点设计-效应面法优化空白白蛋白纳米粒吸附灯盏花素的制备参数。以灯盏花素浓度、空白白蛋白纳米粒浓度、灯盏花素加入量为因素,以包封率、载药量、载药后粒径的增大量为指标,分别用不同数学模型描述指标与因素间的关系。根据模型绘制效应面,预测最优处方并进行验证。对制得产物的粒径、多分散系数、Zeta电位及体外释药性质等进行了研究。结果表明,考察因素与考察指标之间的定量关系均具有较高的可信度,优化处方的预测值和测定值非常接近。最佳制备参数:灯盏花素溶液浓度1.45 mg/mL,空白白蛋白纳米粒混悬液浓度30 mg/mL,前者为后者的2.4倍体积;产物的载药量为6.73%,包封率为80.08%,粒径增加22.7 nm。载药后的纳米粒平均粒径为283.4 nm,多分散系数为0.117,Zeta电位为17.95 mV,24 h累积释放率79.19%。本实验成功地将灯盏花素吸附于空白白蛋白纳米粒,并优化了该载药白蛋白纳米粒的制备条件。  相似文献   

15.
目的:摸索出非那雄胺固体脂质纳米粒的制备方法。方法:采用改良的乳化蒸发-低温固化法将非那雄胺包封于固体脂质纳米粒中,制备0.1%、0.5%、1%不同浓度非那雄胺-固体脂质纳米粒(finasteride Solid lipid nanoparticles,FSLN)混悬液,观察其外观,用透射电镜考察其形态。结果:仅有0.1%非那雄胺-固体脂质纳米粒外观均匀,粒径为(98.2±15.3),包封率96.3%。结论:0.1%非那雄胺-固体脂质纳米粒包封率高,粒径分布较均匀,具有一定的稳定性。  相似文献   

16.
目的 研制蒿甲醚-蔗糖铁脂质纳米粒且表征其理化性质.方法 以大豆卵磷脂和大豆油为载体,采用薄膜分散-高压乳匀法制备蒿甲醚-蔗糖铁脂质纳米粒.用高效液相色谱法测定包封率和载药量,用电子显微镜观察形态,用激光粒度仪测定粒径.结果 制得的脂质纳米粒呈类球状,粒径较均匀,平均粒径为(161±17.4) nm,包封率为(85.1±0.83)%,载药量为(5.3±0.2)%.体外释放实验表明,脂质纳米粒具有良好的缓释特征.结论 该制备工艺简单可行,制得的纳米粒分散均匀,包封率较高.  相似文献   

17.
目的 制备新藤黄酸纳米结构脂质载体并表征其药剂学性质。方法 采用乳化蒸发-低温固化法制备新藤黄酸纳米脂质载体(GNA-NLC),正交试验设计优化最佳工艺处方,并对其包封率、平均粒径及Zeta电位等性质进行考察。结果 优化后处方制备的GNA-NLC多为圆整、实体的类球形,平均粒径为(144.07±1.44)nm,多分散系数为0.24±0.01,Zeta电位为(?28.03±0.29)mV,包封率为(84.65±0.98)%,载药量为(4.21±0.05)%;DSC显示GNA纳米粒确已形成,并且GNA以非晶态分布在基质中。结论 乳化蒸发-低温固化法能成功制备GNA-NLC,工艺简单,易于控制。  相似文献   

18.
目的研制索拉非尼半乳糖神经酰胺固体脂质纳米粒(S-GC-SLN)混悬液。方法采用乳化蒸发一低温固化法制备S-GC—SLN,正交试验法优选处方,透射电镜观察形态,激光粒度测定仪测定粒径、多分散指数及Zeta电位,采用葡聚糖凝胶柱层析法与HPLC法测定包封率。结果优选处方为:索拉非尼15mg、半乳糖神经酰胺250mg、泊洛沙姆188350mg、蛋黄卵磷脂450mg。所制脂质纳米粒子为类球形实体,粒径为(186.6±2.6)nm,Zeta电位为(-46.1±2.9)mV,包封率为(83.47±1.54)%。结论乳化蒸发一低温固化法制备S-GC—SLN可行,为开发索拉非尼新制剂提供了实验依据。  相似文献   

19.
盐酸小檗碱眼用固体脂质纳米粒的研究*   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]制备盐酸小檗碱固体脂质纳米粒。[方法]采用乳化蒸发低温固化法制备盐酸小檗碱纳米粒,采用离体角膜透过实验对其体外进行评价。[结果]制备的纳米粒的包封率为51.1%,平均粒径为(19±2)nm,zeta电位为-11.5 mV,表观渗透系数为(1.46±0.45)×10-6cm/s,与对照组相比增加了16%,差异有统计学意义(P<0.05)。[结论]所用制备工艺简单,可用于制备盐酸小檗碱固体脂质纳米粒。  相似文献   

20.
目的 制备透明质酸修饰的白蛋白纳米粒,对其修饰程度和载药性能进行考察,并初步评价其抗肿瘤作用.方法 用去溶剂化法制备白蛋白纳米粒,并用透明质酸修饰纳米粒表面,以表面活性氨基的减少作为评价透明质酸修饰的白蛋白纳米粒的修饰程度的指标,并筛选最佳处方;考察pH和载药量及包封率的关系.使用噻唑蓝比色法(MTT)测定纳米粒对人肝癌细胞株HepG2的抑制率.结果 制备所得的透明质酸修饰的白蛋白纳米粒的平均粒径为396 nm,Zeta电位-19.7 mV,表面氨基减少率为34.28%;透明质酸修饰的米托蒽醌白蛋白纳米粒载药量11.13%,包封率94.64%,平均粒径为398 nm,Zeta电位-17.9 mV,且具有明显的缓释作用.透明质酸修饰的米托蒽醌白蛋白纳米粒比米托蒽醌水溶液具有更强的细胞抑制率(P<0.05).结论 所用制备工艺稳定,可用于制备透明质酸修饰的白蛋白纳米粒.透明质酸修饰的米托蒽醌白蛋白纳米粒具有不低于药物溶液的活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号