首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
目的 优化载药胶束的制备工艺,并对其稳定性进行考察. 方法 采用高效液相(HPLC)法测定紫杉醇(PTX)含量,以载药量、包封率、粒径为考察指标,通过单因素考察方法优化载药胶束的制备工艺. 结果优化工艺下制备的载PTX胶束载药量为(38.63 ± 0.42)%,包封率为(83.19 ± 1.23)%,粒径为(192.2 ± 0.5)nm,载PTX聚合物胶束一定条件下贮存10 d后,粒径与载药量无明显变化. 结论 该载药工艺简单可行,可用于载PTX聚合物胶束的制备,所制备的聚合物胶束短期贮存稳定.  相似文献   

2.
紫杉醇聚氰基丙烯酸正丁酯纳米粒制备研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 评价紫杉醇聚氰基丙烯酸正丁酯纳米粒(PTX-PBCA-NPs)的不同制备工艺对紫杉醇的包封率和载药量的影响,优选PTX-PBCA-NPs的制备工艺.方法 以包封率和载药量为主要评价指标,分别采用界面缩聚法和乳化聚合法制备PTX-PBCA-NPs,进行对比研究.用正交设计优选处方.结果 界面缩聚法、乳化聚合法制备的PTX-PBCA-NPs的包封率范围均在94.39%~9.23%(n=3)之间,界面缩聚法制备的PIX-PBCA-NP的载药量可达(1.07±0.03)%(n=3),而乳化聚合法制备的PTX-PBCA-NP的载药量可达(0.86:±0.01)%(n=3).用正交试验优选出最佳工艺条件,PTX-PBCA-NPs载药量为0.80%,包封率为95.71%,粒径为235.6nm.结论 两种制备方法制备出来的PTX-PBCA-NPs的包封率符合药典要求.经比较研究,界面缩聚法可能是提高PTX-PBCA-NPs载药量较好的一种制备方法(P<0.05).  相似文献   

3.
穿心莲有效部位Poloxamer188聚合物胶束的制备工艺   总被引:1,自引:0,他引:1  
目的制备Poloxamer188穿心莲有效部位的聚合物胶束。方法薄膜水化法制备穿心莲有效部位聚合物胶束,正交设计优化处方工艺。HPLC法测定其载药量和包封率,激光粒度仪测定粒径。结果载药胶束包封率为(85.7+2.1)%,载药量为(1.11+0.09)%,粒径为(198.32+3.35)nm。结论载药Poloxamer188胶束制备工艺简便易行,为中药制剂提供了新剂型。  相似文献   

4.
目的 制备川芎嗪PLGA微球并考察其物理化学性质及体外释药性.方法 采用O/W型乳化-溶剂挥发法制备川芎嗪PLGA微球,正交试验设计优化处方组成和制备工艺,对微球的外观形态、粒径及粒度分布、包封率和载药量等理化性质进行了检测.结果 以优化处方制备的川芎嗪PLGA微球为圆球形,粒度分布较均匀,平均粒径为(10±2.2)μm,包封率为(81.36±1.15)%,载药量为(8.2±0.43)%,药物体外释放可延长至768h,释药特性符合Weibull方程,经差示扫描量热法(DSC)分析证明,形成了新的物相,表明载药微球确已形成.结论 采用O/W型乳化-溶剂挥发法制备的川芎嗪PLGA微球包封率和栽药量高,粒径均匀,具有明显的缓释作用.  相似文献   

5.
目的 比较载替莫唑胺聚氰基丙烯酸正丁酯纳米粒( TMZ-PBCA-NP)的不同制备方法,确定最佳制备工艺.方法 以α-氰基丙烯酸正丁酯(BCA)为载体,分别采用乳化聚合法和界面聚合法制备TMZ-PBCA-NP,加以吐温-80(T-80)进行表面修饰,并通过zeta电位仪检测纳米粒粒径和电位、透射电镜观察纳米粒形态、紫外分光光度计测定各自的包封率和载药量.结果 乳化聚合法制备的TMZ-PBCA-NP平均粒径(135.8±11.3)nm,表面电位(-24.8±2.2 )mV,包封率(44.23±2.04)%,载药量(2.80±0.05)% ;界面聚合法制得的载药纳米粒平均粒径(175.4±10.2)nm,表面电位(-18.3±3.6 )mV,包封率(44.35±2.58)%,载药量(2.31±0.47)%.透射电镜下观察两种方法所制备的纳米粒大小均较为均匀,粒子间无明显聚集.结论 采用乳化聚合法制备TMZ-PBCA-NP效果较优于界面聚合法.  相似文献   

6.
目的:制备雌二醇-聚氰基丙烯酸正丁酯纳米粒(ES-PBCA-NP).方法:以聚氰基丙烯酸正丁酯(PBCA)为载体,采用乳化聚合法制备ES-PBCA-NP.采用U5(53)均匀实验设计优化制备条件.用激光粒度分析仪测定纳米粒的粒径分布及Zeta电位;用原子力显微镜观察其形态;HPLC测定载药量及包封率.结果与结论:综合考虑选用二乙胺乙基葡聚糖(DEAE-Dextran)作为实验用表面活性剂,制备优化条件:pH 2.0,稳定剂和表面修饰剂质量比为1:1,BCA用量终质量浓度为12 g/L.以上述条件制备的纳米粒,稳定性好、形态规整、大小均匀,粒径(115±7)nm,Zeta电位为(43.6±3.2)mV,载药量为61 mg/g,包封率为78.0%,适合作为雌二醇的给药载体.  相似文献   

7.
目的:采用界面聚合法制备大黄酚聚氰基丙烯酸丁酯纳米囊,筛选其最佳制备工艺,并进行质量考察。方法 在单因素法筛选制备工艺的基础上,以包封率为指标,采用L9(34)正交设计法对处方中搅拌速度、水相pH值、α-氰基丙烯酸丁酯用量和醋酸乙酯用量进行筛选,以优化该制备工艺。对其进行包封率、载药量、粒径和粒度分布等的质量考察。结果:确定大黄酚投药量为5 mg时,最佳制备工艺:搅拌速度为800 r/min,水相pH值为2,α-氰基丙烯酸丁酯用量为13 μL,醋酸乙酯用量为0.6 mL。采用最佳工艺制备的大黄酚纳米囊平均包封率为82.19%,平均载药量为21.48%,平均粒径为246 nm,电镜照片显示粒度分布均匀。结论:采用界面聚合法制备的聚氰基丙烯酸丁酯大黄酚纳米囊粒径小,包封率和载药量高,粒度分布均匀,制备工艺稳定可行,可用于静脉注射给药  相似文献   

8.
目的 制备吉西他滨(Gemcitabine)纳米载药囊泡,对其表面形态、粒径分布、微粒结构、体外释放等性能进行评估.方法 以两亲性共聚物聚乙二醇-聚乳酸(PEG-PDLLA)为原料,采用双乳化法制备载药囊泡,Gemcitabine为模型药物.通过电子显微镜观察纳米载药囊泡的形态和结构,用紫外可见分光光度计测定囊泡的载药量、包封率和体外释放量.结果 纳米载药囊泡呈球形或近似球形,具有明显的空心结构,平均粒径为200.6 nm,载药量和包封率分别为4.14%和20.54%,体外释放实验表明该囊泡具有良好的控释特性.结论 以PEG-PDLLA为原料制备的Gemcitabine纳米载药囊泡具有良好的控释性能,为胰腺癌动物体内实验研究提供了可靠的依据.  相似文献   

9.
三七总皂苷壳聚糖缓释微球的制备及体外释放特性研究   总被引:5,自引:0,他引:5  
目的制备三七总皂苷壳聚糖缓释微球,并对其体外释药特性进行研究。方法采用乳化交联法制备三七总皂苷壳聚糖微球,以粒径分布、包封率、载药量及体外释药速度为评价指标,考察处方因素对壳聚糖微球的影响。并采用正交设计L9(34)对处方进行优化。结果微球的平均粒径为(4.2±0.3)μm,包封率为(28.58±2.76)%(n=3),载药量为(17.15±1.65)%(n=3)。结论通过优化处方和制备工艺,采用乳化交联法制备的三七总皂苷壳聚糖缓释微球,其体外释药具有明显的缓释作用且制备工艺简单。  相似文献   

10.
目的 优化制备包裹反义寡核苷酸a-氰基丙烯酸正丁酯纳米粒(ASODN in NP)并考察稳定性.方法 以氰基丙烯酸正丁酯(butyleyanoacrylate,BCA)为载药材料,采用界面聚合法制备ASODN in NP;在单因素考察的基础上,采用正交设计优化处方和制备工艺;用透射电镜观察其形态;马尔文激光粒度分析仪测定粒径;高效液相色谱法测定载药量和包封率;用含7 mol/L尿素的20%聚丙烯酰胺凝胶电泳考察载药纳米粒在体外血清中的稳定性.结果 按优化工艺条件,制得的载药纳米粒,其形态规整、无黏连、大小均匀,平均粒径为94.9 nm,包封率和载药量分别为 96.7%、10.1%,在体外血清中稳定性好并优于传统的吸附法制备的纳米粒.结论 本实验制备的ASODN in NP具有较好的稳定性,较高包封率和载药量.  相似文献   

11.
目的:均匀设计法优化阿苯达唑聚乳酸-羟基乙酸共聚物纳米粒(ABZ-PLGA-NPs)制备工艺。方法:以包封率、药物利用率和载药量为考察指标,采用纳米粒沉淀法制备ABZ-PLGA-NPs,均匀设计U9(94)优化处方。结果:制得的ABZ-PLGA-NPs包封率为91.8%,药物利用率为5.17%,载药量为0.352%,平均粒径为127.7nm,Zata电位值为-18.7mv。结论:优选的制备工艺简便,重现性好,可制得包封率高、稳定性好、粒径分布理想的阿苯达唑-PLGA-纳米粒。  相似文献   

12.
目的筛选3-溴丙酮酸脂质立方液晶纳米粒(3-BP-LCNP)处方并优化制备工艺。方法通过注入法联合高压均质法制备3-BP-LCNP,以粒径、包封率和载药量为评价指标,采用正交设计和单因素分析进行处方筛选及制备工艺优化;使用马尔文粒度仪进行粒径和电位测定,采用透析法对包封率及载药量进行考察。结果3-BP-LCNP最优处方及制备工艺为甘油单油酸酯:泊洛沙姆407为8:1(总质量保持在1g),分散相用量为25 mL,3-BP投入量为26.67 mg,14900 psi下循环9次,测得平均粒径为192.7 nm,平均包封率为72.53%,载药量为2.71%。结论采用注入法联合高压均质法制备的3-BP-LCNP,制备方法简单及工艺稳定可行。  相似文献   

13.
正交试验法优选盐酸小檗碱脂质体制备工艺   总被引:6,自引:0,他引:6  
目的:优选盐酸小檗碱脂质体的制备工艺。方法:采用主动加药法制备盐酸小檗碱脂质体,在单因素考察基础上采用正交试验设计,以包封率为评价指标,筛选脂质体制备的最佳工艺条件。结果:最佳制备工艺为A2B1C1D1,即卵磷脂与胆固醇之质量比为3∶1,药脂质量比1∶30,孵化时间为20min,孵化温度60℃。制备3批脂质体,平均包封率为(78.51±2.45)%,粒径范围为2.2μm~3.5μm。结论:所选工艺制备的脂质体包封率较高,粒径分布较均匀。  相似文献   

14.
目的: 制备漆黄素脂质体,并对其进行制剂学研究及体内外评价。方法:采用薄膜分散法制备漆黄素脂质体,以粒径为指标,通过单因素考察,制备不同磷脂与胆固醇总量、不同磷脂胆固醇比例及不同药脂比的漆黄素脂质体,确定漆黄素脂质体最优处方。采用激光散射粒径仪测定漆黄素脂质体的粒径、多分散系数、Zeta电位;采用超滤离心法测定漆黄素脂质体的包封率和载药量;对漆黄素脂质体的稳定性,在3种释放介质(pH 1.2 盐酸、双蒸水和pH 7.4 磷酸盐缓冲液)中的体外释放情况,细胞毒性以及药物代谢动力学等体内外参数进行评价。 结果:采用最优处方(漆黄素22.2 mg、磷脂133.3 mg、胆固醇16.7 mg、胆酸钠110 mg、肉豆蔻酸异丙酯60 mg)制备的漆黄素脂质体平均粒径为(60.32±1.08)nm,多分散系数为0.198±0.011,包封率为(94.37±0.62)%,载药量为(4.500±0.021)%。透射电镜结果显示漆黄素脂质体外形圆整且分布均匀。制成脂质体后可提高漆黄素原料药的溶解度、体外释放率以及相对生物利用度;漆黄素脂质体在30 d内具有较好的稳定性。漆黄素脂质体对人肝癌HepG2细胞有明显的增殖抑制作用,且呈现剂量依赖关系。结论:漆黄素脂质体能显著提高难溶性药物漆黄素的溶解度和生物利用度。  相似文献   

15.
新型姜黄素纳米粒制备、表征及其体外抗肿瘤活性评价   总被引:1,自引:0,他引:1  
目的制备高载药量姜黄素纳米粒,并考察其体外稳定性和抗肿瘤活性。方法用油酸(OA)对姜黄素(Cur)进行化学修饰。采用改良的溶剂挥发法制备聚乙二醇聚乳酸乙酸酯(mPEG-PLGA)载Cur-OA2纳米粒(mPEG-PLGA-Cur-OA2,PPCO)。并以纳米粒载药量(drug loading,DL)、包封率(entrapment efficiency,EN)为指标,通过3因素3水平正交试验对工艺进行优化。采用正交确定工艺制备3批载药纳米粒,应用动态光散射粒度仪和透射电镜测定载药纳米粒的zeta电位、粒径与形态。采用体外37℃水浴降解特性来评价其稳定性。最后利用MTT法对纳米粒体外抗肿瘤活性进行初步评价。结果正交实验,包封率影响因素为:有机相与水相的量(B)>超声时间(C)>药物与材料比(A)。载药量影响因素为:有机相与水相的量(B)>药物与材料比(A)>超声时间(C)。利用正交设计筛选出的方法制备纳米粒,其载药量达(24.870±0.029)%,包封率为(81.250±0.101)%,zeta电位-23.9±1.6mV,平均粒径235.0±25.8nm,粒度分布均匀,呈单峰分布。载药纳米粒在37℃,前4h降解了20%,而其后的70h里,只降解了5%左右,相比姜黄素稳定性得到了极大提高。纳米粒体外抗肿瘤活性研究表明,所制备的纳米粒对HepG2细胞仍然具有较好的抑制作用,经48h处理后,其IC50为40.61μmol/L,但相比姜黄素15.76μmol/L有所下降,表现为减毒效应。结论 PPCO纳米粒呈均匀球形、载药量高,稳定性好,并有较好的体外抗肿瘤活性。  相似文献   

16.
17.
目的 优化银杏内酯AB长循环固体脂质纳米粒(GAB-LSLN)的制备工艺.方法 以热融-匀质法制备固体脂质纳米粒,以平均粒径、包封率、载药量为评价指标,采用星点设计考察辅料单硬脂酸甘油酯用量、注射用大豆磷脂用量、Myrj 59用量3因素对制备工艺的影响,对结果进行多元线性和二项式拟合,效应面法选取最佳工艺条件进行预测分析.结果 从复相关系数上看,各指标二项式拟合方程均优于多元线性回归方程-以优化条件制备的GAB-LSLN平均粒径为169.5nm,包封率为92.3%,载药量为5.1%.结论 优选的GAB-LSLN制备工艺稳定可行,包封率高,可用于生产.  相似文献   

18.
目的 应用Box-Behnken实验设计,优化水飞蓟素固体脂质纳米粒的最佳处方。方法 采用三因素三水平Box- Behnken实验设计,以水飞蓟素为模型药物,采用乳化蒸发-低温固化法制备固体脂质纳米粒。利用效应曲面法对影响固体脂质纳米粒包封率、载药量和粒径的主要因素进行考察,以包封率、载药量和粒径为响应值,建立相应的二项式数学模型优化处方。结果 最优处方为固体脂质纳米粒中脂质单硬脂酸甘油酯量为5.05%,7.25% Poloxmer 188作为乳化剂,药物的量为15%。结论 采用Box-Behnken实验设计可用于水飞蓟素固体脂质纳米粒的处方优化筛选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号