首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
目的探讨雷帕霉素对乳腺癌多药耐药细胞系MCF-7/ADR的耐药逆转作用。方法MTT法测定10μM雷帕霉素、阿霉素(10、50、100、500、1000、5000、20000、40000、100000ng/mL)、雷帕霉素联合阿霉素对MCF-7和MCF-7/ADR细胞的增殖率的影响。结果对于MCF-7细胞的增殖率,10μM雷帕霉素对其无显著影响;500ng/mL及以上浓度的阿霉素显著降低增殖率;联合10μM雷帕霉素后,能降低增殖率的浓度仍是500ng/mL及以上。对于MCF-7/ADR细胞,10μM雷帕霉素对其增殖率无显著影响;40000ng/mL及以上浓度的阿霉素降低其增殖率;联合10μM雷帕霉素后,1000ng/mL及以上浓度的阿霉素能降低其增殖率。结论雷帕霉素对MCF-7/ADR细胞有耐药逆转作用。  相似文献   

2.
目的观察水飞蓟素(Silymarin,Sily)对人乳腺癌耐药细胞株MCF-7/ADM的逆转耐药作用。方法以CCK-8法测定阿霉素(Adm)对人乳腺癌敏感细胞株MCF-7/S和耐药细胞株MCF-7/ADM的毒性作用,计算出耐药倍数。以无细胞毒性的Sily(10μg/m L)作为逆转耐药剂,联合Adm观察其对耐药细胞株MCF-7/ADM的逆转耐药作用,计算得逆转倍数。结果 (1)Adm对MCF-7/S和MCF-7/ADM的半数抑制浓度(IC50)分别为1.773μg/m L和43.812μg/m L,耐药倍数为24.7倍。(2)Sily能够增强ADM对MCF-7/ADM的细胞毒作用。以10μg/m L(抑制率为2.0%)的Sily联合Adm作用于MCF-7/ADM 48h后,耐药细胞株的IC50降至7.798μg/m L,逆转倍数为5.6倍(P0.01)。结论Sily能够逆转人乳腺癌耐药细胞株MCF-7/ADM的耐药性。  相似文献   

3.
目的探讨P13K/Akt信号转导通路特异性阻滞剂LY294002在体外对人乳腺癌细胞株MCF-7/ADR的耐药逆转作用。方法乳腺癌细胞MCF-7和MCF-7/ADR各自分为未加LY294002的对照组及加入不同浓度的LY294002组,MTF法观察各组药物的细胞毒作用。选用流式细胞术(FCM)检查细胞凋亡率、细胞分布周期的变化。结果①LY294002在浓度10umol/L以下时对两种细胞基本无毒性,为安全有效的逆转剂量。②阿霉素对MCF-7和耐药细胞MCF-7/ADR的半数抑制浓度(IC50)分别为(0.14±0.02)μmol/L和(15.74±0.08)μmol/L,耐药倍数为112倍。③LY294002能够增强阿霉素对MCF-7/ADM的细胞毒作用,LY294002浓度0.1、2.5、5.0、10μmol/L分别作用于MCF-7/ADM细胞48h后,耐药细胞株的IC50分别降至(13.53±0.10)μmol/L、(10.24±0.08)μmol/L、(5.53±0.16)μmol/L、(2.29±0.12)μmol/L,差异有统计学意义(P〈0.01)。④LY294002可显著增加MCF-7/ADR细胞凋亡率(P〈0.01)。细胞周期分布显示,加用LY294002对各个细胞周期影响不明显。结论LY294002能够增加MCF-7和MCF-7/ADR的化疗敏感性,部分逆转耐药细胞MCF-7/ADR的多药耐药性。  相似文献   

4.
目的 明确水飞蓟素(Silymarin,Sily) 对人乳腺癌耐药细胞株MCF-7/ADM的逆转耐药作用。方法 以CCK-8法测定阿霉素(Adriamycin,Adm)对人乳腺癌敏感细胞株MCF-7/S和耐药细胞株MCF-7/ADM的毒性作用,计算出耐药倍数。以无细胞毒性的Sily(10μg/ml)作为逆转耐药剂,联合Adm观察其对耐药细胞株MCF-7/ADM的逆转耐药作用,计算得逆转倍数。结果 ①Adm对MCF-7/S和MCF-7/ADM的半数抑制浓度(IC50)分别为1.773 μg/ml和43.812 μg/ml,耐药倍数为24.7倍。②Sily能够增强ADM对MCF-7/ADM的细胞毒作用。以10μg/ml(抑制率为2.0%)的Sily联合Adm作用于MCF-7/ADM 48h后,耐药细胞株的IC50降至7.798 μg/ml,逆转倍数为5.6倍(P <0.01)。结论 Sily能够逆转人乳腺癌耐药细胞株MCF-7/ADM的耐药性。  相似文献   

5.
Li L  Wang T  Xu ZL  Yu Y  Chen W  Chen F 《中华医学杂志》2005,85(23):1633-1637
目的 探讨五味子乙素(SchB)对转染多药耐药1基因(MDR1)的人乳腺癌细胞MCF-7的多药耐药逆转作用及相关机制。方法 将人MDR1基因导入MCF-7细胞,形成耐药细胞株MCF-7/MDR1;用该细胞株为模型评价SchB的体外逆转多药耐药作用,用MTT法进行化疗药物单独或与SchB联合作用时对耐药细胞的IC50比较,计算逆转倍数。结果 转染细胞MCF-7/MDR表现为P糖蛋白高表达,对阿霉素、长春新碱、紫杉醇、高三尖杉酯的抗药性均增加;SchB(25μmol/L)显著减少阿霉素、长春新碱、紫杉醇和高三尖杉酯对MCF-7/MDR细胞的IC50,逆转倍数达6.03-23.94倍;SchB(25μmol/L)使MCF-7/MDR细胞对若丹明123的胞内积聚增加约5倍。效果与维拉帕米10μmol/L浓度时相当;但SchB(25μmol/L)不影响MCF-7/MDR细胞的P-糖蛋白表达。结论 SchB能有效逆转转染MDR1的MCF-7细胞的多药耐药,其机制可能是抑制了P-糖蛋白的药物外排生物学活性。  相似文献   

6.
目的:探讨哌啶生物碱洛贝林对人乳腺癌多药耐药细胞株MCF-7/ADM耐药的逆转作用及其分子机制。方法:利用MTT比色法测定不同浓度洛贝林对人乳腺癌细胞株MCF-7/ADM的阿霉素(ADM)和氟尿嘧啶(Fu)的耐药逆转指数。多功能酶标仪测定洛贝林干预对细胞内罗丹明123荧光强度以反映其对细胞多药耐药蛋白P-gp活性的影响。同时用流式细胞术检测洛贝林对MCF-7/ADM细胞内罗丹明123积聚浓度的影响,从功能学的角度观察洛贝林的耐药逆转作用及其机制。结果:洛贝林(10 μmol/L)干预下,多药耐药细胞株MCF-7/ADM对化疗药的敏感性增加,ADM对耐药细胞株的IC50由(44.81±0.43)mg/L降至(16.72±0.75)mg/L,逆转指数为2.68;Fu对耐药细胞株的IC50由(53.12±1.60)mg/L降至(38.90±1.43)mg/L,逆转指数为1.37。洛贝林对细胞的罗丹明123外排有显著的浓度依赖性抑制作用。洛贝林(20 μmol/L)的多药耐药逆转有效率为经典耐药逆转剂维拉帕米(20 μmol/L)的71.6%,但毒副作用显著降低。结论:洛贝林对乳腺癌多药耐药细胞株MCF-7/ADM的耐药性具有逆转作用,其机制主要为抑制细胞多药耐药蛋白P-gp的活性  相似文献   

7.
目的研究钙调素拮抗剂O-4-乙氧基-丁基-小檗胺(EBB)对乳腺癌多药耐药细胞系MCF-7/ADR的耐药逆转作用。方法采用四唑盐(MTT)比色法测定药物敏感性,分析联合应用低剂量EBB(≤IC20)时阿霉素(ADR)对MCF-7/ADR细胞的半数抑制浓度(IC50)值及其增敏倍数;应用流式细胞术测定EBB对细胞周期的影响,同时观察细胞内药物浓度的积累;采用逆转录—多聚酶链反应检测EBB对多药耐药基因-1(mdr1)及拓扑异构酶Ⅱb(topⅡb)mRNA表达水平的影响。结果EBB对MCF-7/ADR的多药耐药具有明显逆转作用,3、7·5μmol/L浓度的EBB可以明显提高MCF-7/ADR对ADR的敏感性,平均增敏倍数分别为50·40、89·80倍,逆转强度明显高于阳性逆转剂维拉帕米(VPL)的14·88倍(P=0·0097)。6μmol/L的EBB处理2h后,细胞内积累的P糖蛋白底物罗丹明123(Rh123)荧光强度峰值发生明显右移;同时EBB可明显增强ADR对MCF-7/ADR细胞在G2/M期的阻滞作用。6和12μmol/L的EBB处理MCF-7/ADR细胞48h后,mdr1的mRNA表达水平有一定的降低趋势,但无统计学差异;topⅡb基因表达差异亦无显著性。结论EBB对MCF-7/ADR细胞具有较强的逆转多药耐药作用,其可能的逆转机制在于增强ADR对耐药细胞在G2/M期的阻滞以及抑制P糖蛋白外排泵作用。  相似文献   

8.
目的观察耐药乳腺癌细胞c-myc表达及其反义寡核苷酸对耐药的逆转效应,探讨c-myc在耐药调控中的作用。方法运用流式细胞仪检测乳腺癌耐药细胞MCF-7/Adr和其药敏亲本系MCF-7的c-myc表达水平。MTT法测定阿霉素作用于上述细胞的药物半数抑制浓度(IC50)。结果MCF-7/Adr耐药细胞c-myc的表达率为70.48%,其亲本药敏细胞系MCF-7c-myc表达率仅46.02%,前者显著高于后者(P<0.05)。阿霉素单独作用于MCF-7/Adr,IC50值为(22.00±1.92)μmol/L,但与4μmol/Lc-myc反义寡核苷酸共孵育后,阿霉素的IC50值则显著下降为(9.60±1.04)μmol/L。结论与其亲本药敏细胞相比较,MCF-7/Adr的c-myc表达显著上调,抑制c-myc的过表达可部分逆转MCF-7/Adr的阿霉素抵抗,提示c-myc参与肿瘤耐药的发生。  相似文献   

9.
目的 观察新藤黄酸(gambogenic acid,GNA)对人乳腺癌耐药细胞MCF-7/ADR的作用.方法 采用MTT法观察GNA、阿霉素(adriamycin,ADR)及两者联用对MCF-7/ADR细胞增殖的抑制作用,采用流式细胞仪观察MCF-7/ADR细胞内ADR浓度.结果 GNA能剂量依赖地抑制MCF-7/ADR细胞的生长,作用48 h时,GNA对MCF-7/ADR细胞的IC50为12.88 μmol/L;4 μmol/L GNA可增加MCF-7/ADR细胞对ADR的敏感性,使ADR对MCF-7/ADR细胞的IC50由80.22 μmol/L降至12.54 μmol/L;GNA显著增强MCF-7/ADR细胞内ADR的积累,呈剂量依赖关系.结论 低剂量GNA能显著增加MCF-7/ADR细胞对ADR的敏感性.  相似文献   

10.
[目的]观察川芎嗪对抗癌剂诱导人乳腺癌细胞耐药株MCF-7/adr细胞多药耐药性的逆转作用.[方法] MTT法检测抗癌剂对乳腺癌细胞株(MCF-7)和阿霉素诱导的多药耐药细胞株(MCF-7/adr)的半数致死浓度(IC50),计算耐药指数(RI)和加川芎嗪、维拉帕米逆转剂后的逆转倍数;倒置显微镜和荧光显微镜观察川芎嗪逆转后的MCF-7/adr细胞形态;琼脂糖凝胶电泳检测川芎嗪逆转后细胞凋亡的DNA片段.[结果] 对抗癌剂阿霉素、足叶乙甙、长春新碱、紫衫醇和长春花碱,MCF-7/adr细胞株的IC50均有明显增加, RI分别为145.7、41.7、72.2、488.4和286.8;加川芎嗪后IC50均有明显降低,逆转倍数分别为4.6、2.5、6.1、9.2和5.1,与逆转前相比具有统计学意义(P<0.01);荧光显微镜可观察到川芎嗪逆转后细胞凋亡的凋亡小体;琼脂糖凝胶电泳检测出川芎嗪逆转后细胞凋亡的DNA片段.[结论] 川芎嗪有逆转抗癌剂诱导MCF-7/adr细胞的多药耐药性的作用.  相似文献   

11.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

12.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

13.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

14.
彭浩  杨华伟  宋立伟  周正 《中华医学杂志》2009,89(25):1745-1748
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

15.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

16.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

17.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

18.
目的 应用基因芯片技术研究人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7基因表达谱的差异,筛选阿霉素耐药相关基因.方法 选择人乳腺癌阿霉素耐药细胞株MCF-7/ADR与其亲本细胞株MCF-7为研究对象,应用四甲基偶氮唑盐(MTT)快速比色法检测、比较阿霉素对MCF-7/ADR细胞与MCF-7细胞的体外抑制率,然后应用含14 755个基因的人cDNA基因芯片检测MCF-7/ADR细胞与MCF-7细胞基因表达谱的差异,筛选阿霉素耐药相关基因.结果 阿霉素对MCF-7/ADR细胞的体外抑制率明显低于MCF-7细胞(P<0.05),MCF-7/ADR细胞对阿霉素耐药性明显强于MCF-7细胞.MCF-7/ADR细胞与MCF-7细胞中表达差异的基因2374个,MCF-7/ADR细胞较MCF-7细胞表达上调的基因1099个,表达下调的基因1275个;10倍以上上调表达的基因99个,10倍以上下调表达的基因71个.表达显著上调的基因为Bcl-2、GSTP1、c-myc、MMP-1、NNMT,表达显著下调的基因为p53、p21、p27、CYPIA1.结论 乳腺癌阿霉素耐药是一个多基因、多环节、多途径参与的过程,涉及多种基因表达的变化.运用基因芯片技术检测乳腺癌阿霉素耐药基因,有望为指导临床选择最佳个体化化疗方案开辟新途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号