首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
目的 制备聚乙烯亚胺修饰纳米金基因载体并研究其理化性质的表征参数和体外转染效率.方法 通过化学还原法制备聚乙烯亚胺修饰的纳米金基因载体,用绿色荧光蛋白质粒(pAcGFP-N1)做报告基因,纳米基因载体可通过静电吸附的方式结合质粒DNA.用紫外分光光度计检测其吸收光谱,用透射电镜观察其形态特征,激光粒度分析仪测定其粒度分布、表面电位(Zeta电位),1%琼脂糖凝胶电泳检测该基因载体与质粒DNA的结合稳定性,CCK-8实验检测聚乙烯亚胺修饰纳米金基因载体及DNA-纳米金复合物对HEK293细胞的细胞毒性作用,通过荧光显微镜观察聚乙烯亚胺纳米基因载体介导pAcGFP-N1在体外培养的HEK293细胞中的表达,并分析其转染效率.结果 聚乙烯亚胺还原氯金酸可以得到带正电荷的纳米颗粒,呈单分散球形分布,其粒径为(12.3 ±3.3)nm.在pH =7.2时,Zeta电位为+(29.7±5.1)mV.1%琼脂糖凝胶电泳结果表明,当纳米金/质粒DNA≥0.5时,质粒DNA可完全结合到纳米金表面.体外转染实验表明,聚乙烯亚胺修饰纳米金基因载体能介导pAcGFP-N1转染HEK293细胞并在细胞中表达绿色荧光蛋白,其转染效率可达25%.结论 聚乙烯亚胺修饰纳米金是一种新型非病毒基因载体,具有转染效率高、对细胞毒性小等优势.  相似文献   

2.
目的 制备聚乙烯亚胺载基因纳米颗粒并研究其理化性质和体外转染活性.方法 通过自由基聚合法制备出聚乙烯亚胺空载纳米粒后,用绿色荧光蛋白(PEGFP-C1)质粒做报告基因,以静电吸附的方式将PEGFP-C1质粒DNA和聚乙烯亚胺结合形成聚乙烯亚胺裁基因纳米粒,用透射电镜观察其形态特征,激光粒度分析仪测定其粒度分布、表面电位(Zeta电位),MTT试验检测聚乙烯亚胺纳米载体HepG2和L-02的细胞毒作用,用体外基因转染实验评价纳米粒的转染活性,用流式细胞仪测定转粢效率.结果 聚乙烯亚胺与聚甲基丙烯酸甲酯形成表面带正电荷的纳米粒,呈单分散球形,平均粒径为102.62 nm,Zeta电位为+46.2 mV.当PEGFP-C1质粒DNA与纳米粒的N/P为3.2:1以上时,两者方可完全结合形成复合物.PEI纳米粒可携带质粒DNA进入COS7细胞,并突破吞噬小泡释放质粒于细胞质,最终质粒聚集于细胞核内进行表达.结论 聚乙烯亚胺纳米粒可以用作基因递送的非病毒栽体系统,值得进一步研究.  相似文献   

3.
目的合成对叔丁基杯[4]芳烃酸偶合低相对分子质量聚乙烯亚胺聚合物作为非病毒转基因载体,并评价其毒性、压缩DNA的能力,携带报告基因转染细胞的能力。方法采用新方法合成对叔丁基杯[4]芳烃酸偶合聚乙烯亚胺聚合物,通过核磁共振方法表征。将合成的新聚合物与DNA混合,得到新聚合物/DNA复合物,用琼脂糖电泳试验测定不同N/P比值形成复合物时对质粒DNA电泳的阻滞情况,评价其压缩DNA能力。透射电镜法检测复合物的大小,MTT法检测其对细胞的毒性作用,使用新聚合物携带报告基因转染细胞,并与PEI25000比较转染率。结果新聚合物压缩质粒DNA的能力随N/P比值增大而增强,在N/P比为6时可以完全阻滞质粒DNA的电泳,在N/P比为60时,复合物粒径约291 nm,复合物的表面电荷约14.6 m V。细胞毒性试验表明新聚合物与PEI25000相比毒性明显下降,携带报告基因转染MCF-7细胞转染效率与PEI25000相近。结论对叔丁基杯[4]芳烃酸聚乙烯亚胺新聚合物具有较强压缩质粒DNA能力,对细胞毒性低,转染效率高,是一种可应用于基因治疗的新型非病毒载体。  相似文献   

4.
目的 优化聚乙烯亚胺-乳酸羟基乙酸共聚物(PEI-PLGA)阳离子纳米粒介导的癌细胞基因转染效率.方法 用二步法制备报告基因质粒pCMVβ/PEI-PLA纳米粒复合物,透射电镜观察粒子形态,Zeta粒度仪测定粒径和表面电荷.以pCMVβ基因质粒与纳米粒的比(N/P)、转染时间和基因转染剂量为条件,转染效率为指标,正交设计法优化pCMVβ/PEI-PLGA纳米粒复合物的转染效率.结果 pCMVβ/PEI-PLGA纳米粒复合物呈单分散球形,N/P比为10:1,Zeta电位为+16.5 mV,平均粒径为217 nm,基因质粒剂量为每孔3 μg时,纳米粒复合物的转染效率最高为16.35%.结论 PEI-PLGA纳米粒可有效将报告基因质粒转移入宫颈癌细胞,优化实验条件可提高转染效率.  相似文献   

5.
目的:考察聚乙烯亚胺(PEI)相对分子质量、氮磷比(N/P比)、溶剂、离子强度等对PEI/DNA复合物形成、表面性质以及细胞转染效率的影响。方法:制备不同相对分子质量PEI/DNA复合物,通过凝胶电泳和紫外吸收检测确定PEI与DNA的复合能力(N/P比),测定不同溶剂、离子强度下的粒径和Zeta电位,考察复合物在HepG2细胞中的转染情况。结果:PEI与DNA的复合能力与PEI的相对分子质量呈正相关,不同溶剂、离子强度会影响复合物的表面性质,以磷酸盐缓冲液(PBS)为溶剂、PEI(25kD)为载体、N/P比为12~15时,PEI/DNA复合物细胞转染效率明显优于质粒DNA,仅略低于阳性对照组。结论:经优化的PEI/DNA复合物可显著提高DNA在细胞中的转染效率。  相似文献   

6.
目的验证MPEG-PLGA纳米胶囊在真核质粒转染细胞中应用的可行性。方法利用直接溶解法将MPEG-PLGA溶解于4℃双蒸水中,加入绿色荧光载体混匀后静置于37℃恒温箱中30 min制成MPEG-PLGA/pEGFP-C3纳米胶囊复合物,检测复合物粒径大小并转染机体细胞,通过对机体细胞绿色荧光的表达判断复合物的转染效率。结果 MPEG-PLGA/pEGFP-C3粒径为28.3 nm,细胞绿色荧光显示复合物组转染率远大于裸质粒对照组。结论 MPEG-PLGA/pEGFP-C3纳米胶囊复合物可有效提高质粒的转染率,可作为一种新型跨膜载体在临床与研究中应用。  相似文献   

7.
目的:构建以香菇多糖为骨架材料键合低分子量聚乙烯亚胺的新型转基因载体,研究其在肿瘤细胞中的基因转染.方法:从香菇中提取香菇多糖作为载体骨架,1,1'-二羰基咪唑(CDI)作为交联剂,键合低分子量的聚乙烯亚胺(PEI 1.2 kDa)形成香菇多糖-聚乙烯亚胺(LNT-PEI)聚合载体材料.将叶酸(folic acid,FA)偶联到LNT-PEI上,形成具有肿瘤细胞靶向性的组装式基因载体LNT-PEI-FA.用核磁共振氢谱(1H-NMR)、傅里叶转换红外光谱(FT-IR)和热重分析(TGA)等对载体材料进行化学表征,以确定其结构.用凝胶电泳阻滞实验观察LNT-PEI-FA对质粒DNA的结合能力,MTT法检测聚合物的毒性,用TEM对LNT-PEI-FA/DNA复合物的粒径大小、形状等进行检测.在A293和B16细胞株上进行转染实验.结果:凝胶阻滞电泳结果显示,LNT-PEI-FA与DNA在W/W为1.8∶1时可以完全缩合DNA,在相同浓度下LNT-PEI-FA的毒性明显低于PEI 25 kDa;体外转染实验显示,在A293和B16细胞株上具有很高的转染效率,荧光素酶表达值分别为1×1010和1×107.结论:以香菇多糖为骨架材料键合低分子量聚乙烯亚胺形成的转基因载体是一种有潜在研究价值的新型非病毒转基因载体.  相似文献   

8.
目的:以阿司匹林为配体的聚乙烯亚胺-β-环糊精(PEI-β-CyD)生物复合材料,观察其理化特性和转基因功能.方法:通过N,N'-羰基二咪唑(1,1'-carbonyldiimidazole,CDI)将阿司匹林偶联到PEI-β-CyD载体材料上,制成PEI-β-CyD-ASP复合材料.用1H-NMR、FT-IR、UV和XRD对合成的载体材料进行了化学表征,用凝胶电泳阻滞实验观察PEI-β-CyD-ASP浓缩质粒DNA的能力,用MTT法在A293、B16、Hela细胞上对载体的细胞毒性进行评价,以及体外转染实验.结果:成功合成了以阿司匹林为配体的聚乙烯亚胺-β-环糊精复合材料,在N/P为4∶1时其能有效浓缩质粒DNA;而且其在A293、B16、Hela细胞上的毒性较低,在B16肿瘤细胞上表现出较高的转染效率.结论:以阿司匹林为配体的聚乙烯亚胺-β-环糊精复合材料是低毒、选择性高的非病毒基因载体.  相似文献   

9.
目的:建立含人PPARγ1受体基因phPPARγ1-IRES2-EGFP重组质粒高效体外转染表达体系.方法:采用阳离子脂质体Lipofectamine 2000将phPPARγ1-IRES2-EGFP转染入293细胞,荧光显微镜观察转染细胞绿色荧光蛋白(GFP)报告基因表达强度及其转染效率,并对转染细胞hPPARγ1表达进行荧光定量PCR和Western Blot分析.结果:荧光显微镜下可见转染phPPARγ1-IRES2-EGFP质粒的293细胞GFP报告基因高表达,转染效率为(83±11)%;荧光定量PCR和Western Blot检测结果表明,转染细胞hPPARγ1表达水平高于空载体对照组3个数量级,说明导入的重组质粒能够高效表达hPPARγ1.结论:成功建立phPPARγ1-IRES2-EGFP重组质粒高效体外转染表达体系,为hPPARγ1受体功能研究和基于hPPARγ1为靶标的药物筛选平台建立打下了良好的基础.  相似文献   

10.
目的结合重组低分子量PEI 和PEG结构修饰两种手段合成出新型可生物降解的非病毒基因载体聚乙二醇-b-(聚谷氨
酸-g-聚乙烯亚胺)。方法用相对分子质量600 的聚乙烯亚胺氨解嵌段聚合物PEG-b-PBLG,合成非病毒基因载体聚乙二
醇-b-(聚谷氨酸-g-聚乙烯亚胺);利用核磁共振氢谱、凝胶渗透色谱、激光粒度分析仪、zeta电位仪和凝胶电泳对载体及其与DNA
复合物进行了表征,并通过体外细胞实验考察了载体的细胞毒性与转染效率。结果我们成功合成出窄分布的非病毒基因载体
聚乙二醇-b-(聚谷氨酸-g-聚乙烯亚胺);凝胶电泳测定结果表明当N/P比大于5时载体能很好地包裹DNA;载体与DNA形成的
复合物粒径为120 nm,zeta电位25 mV;通过MTT实验和体外质粒转染实验显示出载体在测量范围内具有极低的细胞毒性和
很高的转染效率。结论聚合物聚乙二醇-b-(聚谷氨酸-g-聚乙烯亚胺)有望作为非病毒基因传递载体。
  相似文献   

11.
目的:构建含精氨酸-甘氨酸-天冬氨酸(RGD)肽CP9修饰的聚乙烯亚胺(PEI),观察其理化特性和转基因功能。方法:通过琥珀酰亚胺-3-(2-嘧啶二硫)丙酸酯(N-Succinimidyl-3-(2-pyridyldithio)]propionate,SPDP)将CP9偶联到PEI上,合成新型转基因载体CP9-PEI。用^1H-NMR和FT-IR验证CP9的偶联;用凝胶电泳阻滞实验、电镜和粒径检测,观察CP9-PEI浓缩质粒DNA的能力以及浓缩质粒DNA后形成的转染颗粒形态和粒径;通过CP9-PEI在人肝癌细胞株HepG2中的转染实验来验证CP9对PEI的转染效率的影响;通过游离CP9肽的竞争抑制实验验证CP9-PEI的整合素靶向功能。结果:CP9成功偶联到PEI上;CP9-PEI能有效浓缩质粒DNA,形成的转染颗粒形态为圆形或类圆形,在N/P比为10时,粒径约为200nm。CP9-PEI的转染效率是PEI的2倍,游离CP9肽能抑制CP9-PEI的转染效率。结论:修饰了CP9的PEI能有效增加转染效率,具有整合素的靶向能力,是一种具有应用前景的转基因载体。  相似文献   

12.
Summary: To evaluate the feasibility of using polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (polyMAG-1000) as gerle vectors. The surface characteristics of the nanoparticles were observed with scanning electron microscopy. The ability of the nanoparticles to combine with and protect DNA was investigated at different PH values after polyMAG-1000 and DNA were combined in different ratios. The nanoparticles were tested as gene vectors with in vitro transfection models. Under the scanning electron microscope the nanoparticles were about 100 nm in diameter.The nanoparticles could bind and condense DNA under acid, neutral and alkaline conditions, and they could transfer genes into cells and express green fluorescent proteins (GFP). The transfection efficiency was highest (51%) when the ratio of nanoparticles to DNA was 1 : 1 (v:w). In that ratio, the difference in transfection efficiency was marked depending on whether a magnetic field was present or not: about 10 % when it was absent but 51% when it was present. The magnetic iron oxide nanoparticles coated with PEI may potentially be used as gene vectors.  相似文献   

13.
 【目的】研究非病毒基因载体聚乙二醇(PEG)-聚乙烯亚胺(PEI)共聚物的组成对体外介导基因传递的影响。【方法】将含PEG不同分子量和接枝量的PEG-PEI共聚物,与DNA形成复合物。考察带正电荷的PEI与带负电荷的DNA的相互作用,测定了PEG-PEI/DNA复合物的粒径和Zeta电位,及对Hela细胞的毒性和转染率。【结果】PEG侧链并未明显影响PEI与DNA形成复合物的能力;连接PEG5000能够明显降低复合物的粒径;复合物的Zeta电位随着PEG接枝量的增加而降低;细胞毒性不依赖于PEG的分子量的变化,而是取决于PEG的接枝量;共聚物PEG-PEI(2-25-1)被证实为较有效的介导体外基因传递的复合物。【结论】共聚物的结构组成对DNA复合物的理化性质、毒性和转染率都产生较大的影响。  相似文献   

14.
目的 研究非病毒基因载体聚乙二醇单甲醚(MPEG)-聚-L-赖氨酸(PLL)共聚物的组成在体外介导基因传递的影响.方法 将含有不同量MPEG的MPEG-PLL共聚物,与DNA形成复合物.测定MPEG-PLL/DNA复合物的粒径、Zeta电位,并进行凝胶阻滞分析,观察其对Hela细胞的毒性和转染率.结果 MPEG侧链并未...  相似文献   

15.
聚乙烯亚胺介导的报告基因在体外转染效率的研究   总被引:1,自引:0,他引:1  
目的 探讨阳离子聚合体载体PEI2 5 (分枝状 ,2 5KDa)在体外的转染效率。方法 PEI2 5和LipofectamineTM2 0 0 0作为转染试剂 ,瞬时转染CHO细胞系 ,通过检测荧光素酶来评估PEI和LipofectamineTM2 0 0 0的转染效率。结果 当N P =5 ,6 ,7时 ,PEI2 5的转染效率与LipofectamineTM2 0 0 0相比无显著性差异 (P >0 .0 5 )。结论 经济实用的PEI适用于体外的瞬时转染。  相似文献   

16.
目的 探讨嘌呤能P2Z受体介导慢性淋巴细胞白血病(CLL)细胞凋亡的影响因素及其机理,方法 在二价阳离子-1.0mmol/L Mg^2 ,Zn^2 ,Ca^2 ,Sr^2 ,Co^2 ,Ba^2 不同浓度的EDTA或EGTA,不同温度及在含150mmol/L胆碱的介质中,将表达P2Z受体[P2Z( )]的CLL细胞分别同1.0mmol/L三磷酸腺苷(ATP)或0.1mmol/L苯甲酰苯甲酸ATP(BzATP)体外培养8小时,以DNA凝胶电泳,TdT法和流式细胞分析(FCA)检测上述条件下细胞凋亡的诱导或抑制效应。结果 Mg^2 或Ca^2 能以剂量依赖性方式促进ATP诱导P2Z(+)细胞凋亡,而EDTA或EGTA却以相反的方式抑制P2Z(+)细胞凋亡的发生,1.0mmol/L Zn^2 可完全阻止ATP诱导P2Z(+)细胞凋亡所产生的DNA片段,但其它二价阳离子包括1.0mmol/L Sr^2 ,Co^2 ,Ba^2 却不影响ATP的诱导;胆碱作为磷脂酶P2Z(+)细胞凋亡产生DNA片段的发生。结论 P2Z受体介导CLL细胞凋亡可能与核酸内切酶,PLD的参与密切相关。  相似文献   

17.
目的 优化聚乙烯亚胺(polyethylenimine,PEI)介导的细胞转染以提高目的 基因在细胞中的表达强度.方法 根据PEI/DNA不同的质量比(0:1、0.5:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1)利用凝胶阻滞分析结合的情况;不同质量比PEI/DNA形成的复合物对NIH-3T3细胞的转染通过细胞表达强度获得最佳PEb/DNA质量比;比较实验组l(PEI/DNA质量比2:1)、实验组2(重复PEL/DNA质量比2:1)及实验组3(PEI/DNA质茸比4:2)3种转染方案,探讨重复转染的方法是否提高细胞表达强度.结果 ①通过凝胶阻滞分析PEI/DNA能够稳定结合的质量比是1:1~10:1;②PEI/DNA复合物对NIH-3T3细胞进行转染,其荧光表达强度当PEI/DNA(质量比)≤2时随着PEI的增加而提高,当PEI/DNA(质量比)>2时,荧光表达强度反而降低;③采用重复转染的方法实验组2细胞荧光表达强度(24.08±0.28)%明显高于实验组1(8.97±4.02)%和实验组3(14.24±2.68)%(P<0.05).结论 在PEI/DNA(质量比)=2的条件下,PEI/DNA复合物转化NIH-3T3细胞的效果比较理想,重复转染可以提高细胞转染后荧光表达强度.  相似文献   

18.
The aim of present study was to evaluate the feasibility and efficiency of enhanced green fluorescent protein (EGFP) gene delivery to myocardium in vivo by ultrasound targeted microbubble destruction (UTMD) and polyethylenimine (PEI). SonoVue/DNA and PEI/DNA/SonoVue complexes were prepared. Gel electrophoresis analysis was performed to determine the structural integrity of plasmid DNA or PEI/DNA after UTMD. Solutions of plasmid DNA, SonoVue/DNA, PEI/DNA complexes or PEI/DNA/SonoVue complexes were respectively transduced into BALB/c mice hearts by means of transthoracic ultrasound irradiation. Mice undergoing PBS injection, plasmid injection or PEI/DNA complexes injection without ultrasound irradiation served as controls. Gene expression in myocardium was detected 4 days after treatment. Cryosections and histological examinations were conducted. Electrophoresis gel assay showed no damage to DNA or PEI/DNA complexes after UTMD. When the heart was not exposed to ultrasound, the expression of EGFP was observed in the subendocardial myocardium obviously. The strongest expression was detected in the anterior wall of the left ventricle when the heart was exposed to ultrasound alone. Injection of PEI/DNA complexes and UTMD resulted in the highest transfection efficiency and the distributional difference of EGFP was not obvious. No tissue damage was seen histologically. In conclusion, a combination of UTMD and PEI was highly effective in transfecting mice hearts without causing any apparently adverse effect. It provides an alternative to current clinical gene therapy and opens a new concept of non-viral gene delivery for the treatment of cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号