首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
目的制备青藤碱聚乳酸-羟基乙酸共聚物[poly(1actide-co-glycolide acid),PLGA]纳米粒,并优化该处方及其制备工艺。方法采用纳米沉淀法制备纳米粒,以青藤碱和PLGA的质量比、有机相和水相的体积比、表面活性剂聚氧乙烯氢化蓖麻油(RH40)的浓度为考察因素,以包封率和载药量为指标,通过星点设计-效应面法优化处方及制备工艺,并对其进行验证。结果青藤碱PLGA纳米粒的最佳处方和工艺条件为:青藤碱与PLGA的质量比1.4∶10;有机相与水相的体积比为2.2∶10,表面活性剂RH40的浓度为0.7%。制备的纳米粒平均粒径为113 nm,平均包封率为81.53%,平均载药量为7.65%。结论星点设计-效应面法简便可行,适用于青藤碱聚乳酸-羟基乙酸纳米粒的制备工艺优化。  相似文献   

2.
目的优化丁香苦苷聚乳酸(Syr)-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]纳米粒(Syr-NPs)的处方。方法采用纳米沉淀法制备Syr-NPs,以包封率、载药量、平均粒径以及总评"归一值"为评价指标,采用星点设计-效应面法考察PLGA质量浓度(A)、丁香苦苷质量浓度(B)、水相与有机相比例(C)3因素考察对包封率、载药量、平均粒径以及总评归一值的影响,以星点设计-效应面法选取最佳处方条件进行预测分析。结果最优处方工艺为PLGA质量浓度为9.63 mg/mL,Syr质量浓度为12.88 mg/mL,有机相与水相的比例为1∶9.46,制得的Syr-NPs的包封率、载药量、平均粒径分别为(27.86±0.87)%、(7.02±0.15)%、(110.0±1.20)nm。结论该方法稳定可行,可用于优化包载Syr的PLGA纳米粒处方与制备工艺。  相似文献   

3.
张海燕  陈晓燕  万娜  朱根华  郑琴  杨明 《中成药》2011,33(2):245-249
目的:采用星点设计-效应面法优化复乳-溶剂挥发技术制备的壳聚糖(CS)修饰聚乳酸.羟乙酸共聚物(PLGA)栀子苷纳米粒的工艺条件.方法:以PLGA浓度、壳聚糖浓度和PVA浓度为考察因素,粒径、载药量和包封率为考察指标,根据星点设计原理安排实验,并用多元线性回归及二项式拟合建立指标与因素之间的数学关系,经效应面法预测最佳工艺条件.结果:各指标的二项式拟合方程均优于多元线性回归方程,优化工艺条件下制备的纳米粒平均粒径为(204.32±2.36)nm,包封率为(75.60±0.65)%,载药量为(9.87±0.27)%.结论:星点设计-效应面法适用于栀子苷纳米粒的工艺优化,所建立的数学模型预测性良好.  相似文献   

4.
目的制备羟基喜树碱长循环纳米粒并采用星点设计-效应面法筛选制备工艺。方法以单甲氧基聚乙二醇-聚乳酸-羟基乙酸聚合物(m PEG_(2000)-PLGA)作为包封材料,采用改良的乳化-溶剂挥发法制备长循环纳米粒,以包封率与载药量作为评价指标,采用Design-Expert V8.0.6软件进行星点设计,考察羟基喜树碱的浓度、m PEG_(2000)-PLGA的浓度、水相与有机相的体积比因素对评价指标的影响,并应用效应面法得到最佳制备工艺。结果羟基喜树碱长循环纳米粒的最佳工艺为:羟基喜树碱浓度为1.41 mg·m L~(-1),m PEG_(2000)-PLGA浓度为3.86 mg·m L~(-1),水相与有机相的体积比为9.90∶1。制备的长循环纳米粒包封率为35.14%,载药量为2.10%,平均粒径为154.10 nm,电位为-38.61 m V。结论所优化的工艺方法简便、稳定可行,适用于羟基喜树碱长循环纳米粒的制备。  相似文献   

5.
 目的 制备载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物(PEG-PLGA)纳米粒(H102-NP), 考察其体内外特性。方法 采用正交设计法优化纳米粒的处方及制备工艺, 并对载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物的形态、粒径、Zeta电位、包封率、体外释药及稳定性进行表征;小鼠尾静脉注射载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物, 液质联用测定血和脑中药物浓度。结果 载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物呈球状、均一性好, 平均粒径为137 nm, Zeta电位为-38 mV, 包封率为64%。载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物在pH 7.4 PBS和血浆中12 d累积释放分别为93%和95%。载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物与血浆及脑匀浆孵育12 h, 药物降解约5%。静注H102肽溶液, 血中消除快, 脑内含量低;而将其载于纳米粒中, 药物血中消除减慢, 且脑内H102浓度较高、维持时间较长。载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物在血和脑内AUC值分别是溶液剂的245倍和11倍。结论 所制备的载H102肽的聚乙二醇-聚乳酸-羟基乙酸共聚物具有良好的体内外特性, 有望应用于阿尔茨海默病的治疗。  相似文献   

6.
目的:为提高齐墩果酸的生物利用度,采用聚乳酸-羟基乙酸共聚物为载体材料,优选齐墩果酸纳米粒的处方与制备工艺.方法:采用纳米沉淀法制备齐墩果酸纳米粒,HPLC测定齐墩果酸含量.以包封率为指标,L9(34)正交试验设计进行处方优化.结果:制备的齐墩果酸聚乳酸-羟基乙酸共聚物纳米粒(OA-PLGA-NP)为带有蓝光的乳白胶体溶液,平均粒径129 nm,包封率88.64%.结论:该优化条件工艺简便,稳定性良好,可用于OA-PLGA-NP的制备.  相似文献   

7.
目的对包载马钱子碱(brucine)聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA](B-PLGA)纳米粒进行处方与工艺优化。方法采用沉淀法制备B-PLGA纳米粒,以平均粒径、多分散系数(PDI)、Zeta电位、包封率和载药量为评价指标,采用单因素考察法结合星点设计-效应面法(CCD-RSM)筛选B-PLGA纳米粒的最优处方,并将最优处方进行表征及体外释放实验。结果最优处方选择丙酮作为有机溶剂,泊洛沙姆188(F68)作为稳定剂,超声时间为1 min,磁力搅拌速度为900 r/min,磁力搅拌时间为30 min,F68用量为0.35%,载体用量为25 mg,药物用量为1.0 mg,有机相与水相的比为0.54。所制得的B-PLGA纳米粒为淡蓝色乳光透明液体,粒径为(97.12±4.23)nm,PDI为0.098±0.035,Zeta电位为(-27.30±0.31)m V,包封率为(69.24±1.42)%,载药量为(2.65±0.03)%。通过表征,纳米粒形态完整,通过体外释放实验得知,纳米粒体外释放拟合符合Higuchi方程。结论星点设计-效应面法可用于包载马钱子碱PLGA纳米粒处方与工艺优化,且优化后的纳米粒具有缓释作用。  相似文献   

8.
目的应用Box-Behnken实验设计,优化水飞蓟素固体脂质纳米粒的最佳处方。方法采用三因素三水平Box-Behnken实验设计,以水飞蓟素为模型药物,采用乳化蒸发-低温固化法制备固体脂质纳米粒。利用效应曲面法对影响固体脂质纳米粒包封率、载药量和粒径的主要因素进行考察,以包封率、载药量和粒径为响应值,建立相应的二项式数学模型优化处方。结果最优处方为固体脂质纳米粒中脂质单硬脂酸甘油酯量为5.05%,7.25%Poloxmer 188作为乳化剂,药物的量为15%。结论采用Box-Behnken实验设计可用于水飞蓟素固体脂质纳米粒的处方优化筛选。  相似文献   

9.
《中成药》2017,(1)
目的制备苦参碱纳米粒及其麦胚凝集素修饰产物。方法复乳化-溶剂挥发法制备苦参碱纳米粒,以聚乳酸-羟基乙酸共聚物与苦参碱比例、转速和聚乙烯醇浓度为影响因素,粒径、电位、包封率和载药量为评价指标,通过星点设计优化工艺。碳二亚胺法制备麦胚凝集素修饰苦参碱纳米粒,以碳二亚胺与N-羟基琥珀酰亚胺比例、麦胚凝集素加入量和孵化时间为影响因素,粒径、电位和修饰率为评价指标,通过均匀设计优化工艺。结果苦参碱纳米粒的最佳条件为聚乳酸-羟基乙酸共聚物与苦参碱比例0.594∶1,转速815 r/min,聚乙烯醇浓度为0.46%,平均粒径、电位、包封率和载药量分别为112.04 nm、-15.38 m V、90.05%和27.14%。其麦胚凝集素修饰产物的最佳条件为碳二亚胺与N-羟基琥珀酰亚胺比例2.8∶0.12,麦胚凝集素加入量3 mg,孵化时间14 h,平均粒径、电位和修饰率分别为474.7 nm、-5.2 m V和69.51%。结论该制备工艺可靠,所得苦参碱纳米粒及其麦胚凝集素修饰产物性质稳定。  相似文献   

10.
孙娥  丁安伟  张丽 《中草药》2007,38(12):1799-1803
目的制备荆芥内酯聚乳酸乙醇酸纳米粒,并优化其制备工艺。方法以粒径、分散度、包封率和载药量为指标,对溶剂挥发法、溶剂扩散法和溶剂-非溶剂法制备荆芥内酯纳米粒进行比较。在单因素考察基础上,采用正交设计法对纳米粒的处方和溶剂-非溶剂法制备工艺进行优化,并考察了4℃和25℃条件下纳米粒溶液的稳定性。结果溶剂-非溶剂法制备的荆芥内酯纳米粒形态圆整,大小均匀,平均粒径(80.3±1.75)nm,分散度0.0144±0.00625,包封率可达52.53%±0.97%,载药量27.56%±0.91%,显著优于溶剂挥发法和溶剂扩散法,且具有良好的稳定性。结论溶剂-非溶剂法制备荆芥内酯纳米粒具有工艺简便,粒径和分散度小,包封率和载药量高,重复性好,质量稳定的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号