首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研制一种生物利用度高且具有缓释作用的口服胰岛素制剂。方法:通过钙离子交联制备羧甲基壳聚糖纳米粒,采用正交试验优化纳米粒制备条件,以透射电镜观察纳米粒形态,激光粒度分析仪测定粒度,高效液相色谱法测定纳米粒包封率和载药量,并对胰岛素的体外释放性能进行考察。结果:优化工艺制备的纳米粒外观形态圆整,平均粒径为(256.1±11.2)nm,包封率为(45±0.41)%,载药量为(17.2±0.33)%,药理相对生物利用度为14.71%。结论:口服载胰岛素羧甲基壳聚糖纳米粒具有降血糖作用和显著的缓释作用,药理相对生物利用度高。  相似文献   

2.
目的制备口服多烯紫杉醇纳米粒溶液并用HPLC法测定其载药量。方法采用乳化溶剂挥发法制备口服多烯紫杉醇纳米粒溶液,建立HPLC法测定纳米粒药物的含量,进行方法学验证并计算其载药量。结果多烯紫杉醇质量浓度在0.20~3.40mg·mL~(-1)(r=0.999 8)范围内线性关系良好,仪器精密度良好。平均回收率为98.98%,RSD值为3.20%(n=5)。平均载药量为3.84%,RSD值为2.27%。结论 HPLC法可用于测定该纳米粒多烯紫杉醇的载药量。  相似文献   

3.
目的 研究乳酸/羟基乙酸共聚物(PLGA)纳米粒子提高姜黄素口服生物利用度。方法 采用乳液挥发法制备姜黄素-PLGA纳米粒;通过透射电镜(transmission electron microscope,TEM)观察纳米粒形态;采用动态光散射法(dynamic light scattering,DLS)测定纳米粒大小、表面电位(Zeta电位);考察药物的体外稳定性以及药物释放行为;以大鼠口服灌胃给药方式考察姜黄素和姜黄素-PLGA纳米粒的体内药物生物利用度。结果 姜黄素-PLGA纳米粒粒度分布均匀,平均粒径大小约200 nm;姜黄素-PLGA纳米粒具有较高的载药量和包封率以及稳定性,体外药物释放实验结果显示具有一定的缓释效果;口服灌胃100 mg·kg^-1姜黄素和姜黄素-PLGA纳米粒,给药30 min之后,姜黄素-PLGA纳米粒给药组的血药浓度水平显著高于姜黄素组(P〈0.05),药物生物利用度提高到原来的5.2倍。结论 姜黄素-PLGA纳米粒可以有效的提高姜黄素稳定性和口服给药生物利用度。  相似文献   

4.
潘妍  徐晖  赵会英  魏刚  郑俊民 《药学学报》2002,37(5):374-377
目的探索可生物降解乳酸/羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]纳米粒作为大分子蛋白质类口服给药系统的可能性。方法用复乳溶剂挥发法制备了胰岛素乳酸/羟基乙酸共聚物纳米粒(INS-PLGA-NPs);光子相关光谱法测定了平均粒径;HPLC法测定了胰岛素的包封率;放射免疫法研究了纳米粒的载药方式;考察了INS-PLGA-NPs的体外释放特性;评价了口服给予纳米粒对糖尿病大鼠降血糖作用。结果以1% poloxamer 188为乳化剂制备的纳米粒,平均粒径为149.6 nm,多分散度为0.09,包封率为42.8%;同时抗体捕捉实验发现纳米粒主要以吸附方式载药;胰岛素的体外释放分为两相;以10 u·kg-1的剂量给予该纳米粒,4 h后血糖浓度显著降低(P<0.05),10 h血糖降至最低,药理相对生物利用度(10.3±0.8)%。结论PLGA-NPs可能成为大分子蛋白质药物口服给药的新型载体。  相似文献   

5.
《中国海洋药物》2011,30(2):19-24
目的为了提高藻酸双酯钠(PSS)口服制剂的稳定性及其生物利用度,制备藻酸双酯钠的口服纳米粒(PSS-NP),并对其理化性质、体外释药特性及其药效学进行考察。方法采用改进的双乳化溶剂蒸发法(W1/O/W2)制备藻酸双酯钠纳米粒并设计正交试验筛选最优处方;透射电镜观察纳米粒形态;粒度及表面电位分析仪测量纳米粒的粒径及zeta电位;氧瓶燃烧法测定载药纳米粒的包封率与载药量;超速离心法考察载药纳米粒的体外释药特性;正常小鼠灌胃给药测定降血糖效果。结果与结论优化的口服藻酸双酯钠纳米粒为规则的圆球形,其粒径大小为181.8 nm,包封率为75.80%,载药量为10.83%,zeta电位为-17.3 mV;12 h内PSS-NP累积释药百分率为60.37%;PSS-NP对正常小鼠具有显著的降血糖效果。  相似文献   

6.
目的 新型树状大分子(PAMAM-co-0.25OEG,PGD)作稳定剂制备多烯紫杉醇(Docetaxel,DTX)纳米粒,以提高多烯紫杉醇的溶解度和生物利用度。方法 将多烯紫杉醇(DTX)、PGD按药载比8:1,采用超声沉淀联合高压均质法制备DTX-PGD纳米粒,动态光散射测定载药纳米粒粒径及电位;考察37℃条件下,DTX-PGD纳米粒在生理盐水、5%葡萄糖、PBS及血浆中的稳定性及DTX-PGD纳米粒的溶血性。X射线粉末衍射法测定DTX在纳米粒中的晶型形式。透析法测定DTX-PGD纳米粒的体外释放度,MTT法检测DTX-PGD纳米粒对4T1细胞的杀伤作用。结果 多烯紫杉醇在水中的溶解度提高到1.6 mg/mL(原药在水中几乎不溶),纳米粒载药量达65.7%。DTX-PGD纳米粒粒径270.7 nm,PDI值为0.112,电位28.6 mV。DTX-PGD纳米粒在5%葡萄糖及血浆中稳定存在。扫描电镜观察纳米粒为片状,XRD图谱显示,多烯紫杉醇在纳米粒中以晶体形式存在。DTX-PGD纳米粒在PBS缓冲液中释放缓慢,有较好的缓释效果。溶血实验得知,DTX-PGD纳米粒无溶血现象,可采用静脉注射法给药。MTT结果表明,DTX-PGD纳米粒对4T1细胞较多烯紫杉醇溶液具有更强的杀伤作用。结论 PGD树状大分子可以作为一种有效的稳定剂应用到多烯紫杉醇纳米粒的制备中,DTX-PGD纳米粒有望作为一种新型的药物输送系统应用到癌症的临床治疗中。  相似文献   

7.
Liu XL  Zhang WJ  Wei G  Lu WY 《药学学报》2012,47(4):512-516
探索一种穿膜肽寡聚精氨酸[poly(arginine)8,R8]修饰的可生物降解乳酸/羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]纳米粒作为胰岛素(insulin,INS)口服给药载体的可行性。采用复乳-溶剂挥发法制备包载胰岛素的PLGA纳米粒(INS-NP),R8经聚乙二醇桥联修饰于该纳米粒表面(R8-INS-NP)。对纳米粒进行理化性状表征及体外释放特性考察,并进行正常大鼠在体灌肠给药的药动学与药效学评价。所得纳米粒平均粒径为(179.0±5.2)nm,多分散系数为0.152±0.042,胰岛素包封率为(29.10±2.59)%,载药量为(5.05±0.50)%,体外释放呈先快后慢的两相模式。给药剂量为10 U.kg—1时,R8-INS-NP的降血糖效果显著优于同剂量的INS-NP,而且D-构型R8修饰的纳米粒(D-R8-INS-NP)吸收优于L-构型R8修饰的纳米粒(L-R8-INS-NP)。与皮下注射相比,INS-NP、L-R8-INS-NP和D-R8-INS-NP在体灌肠给药的相对生物利用度分别为0.52%、4.78%和8.39%,药理相对生物利用度分别为2.07%、3.90%和8.24%。纳米粒表面经R8修饰可促进其包载的胰岛素经肠道吸收,为实现多肽、蛋白类生物大分子口服给药提供了新思路。  相似文献   

8.
葛根素纳米粒在小鼠体内的药动学   总被引:1,自引:0,他引:1  
目的:制备葛根素纳米粒并对其理化性质进行考察;比较葛根素纳米粒与葛根素混悬液在小鼠体内的生物利用度。方法:通过伪三元相图确定处方,通过研究葛根素纳米粒的黏度、折光率、粒径等进行质量评价;将小鼠随机分成不同的时间组,灌胃葛根素纳米粒和混悬液以及葛根素注射液,高效液相法测定不同时间小鼠血浆中药物浓度,通过3P97程序计算药动学参数。结果:纳米粒载药量为70g&#183;L,粒径(82.3&#177;19.1)nm;药动学参数表明葛根素纳米粒体内吸收较快,达峰时间推后,持续时间长,绝对生物利用度为50.64%。结论:本方法制备葛根素纳米粒,粒径分布均匀,稳定性好,载药量大。葛根素生物利用度较高,解决了葛根素口服利用度低的问题。  相似文献   

9.
目的:研究姜黄素液晶纳米粒大鼠的口服吸收。方法:采用热处理-高压匀质法制备姜黄素液晶纳米粒,利用HPLC测定血浆中姜黄素浓度,DAS 2.0软件处理数据,求算药动学参数。结果:姜黄素液晶纳米粒口服吸收符合单室模型;与原料药组相比,姜黄素液晶纳米粒口服相对生物利用度为395.56%。结论:液晶纳米粒显著提高了姜黄素的口服吸收。  相似文献   

10.
目的制备阿苯达唑聚氰基丙烯酸正丁酯纳米粒(albendazole polybutycyanocrylate nanoparticles,ABZ-PBCA-NP)TDDS给药系统,并考察相关特性及组织分布靶向性。方法种子乳化聚合法制备阿苯达唑纳米粒;等温吸附法考察纳米粒载药特性;动态透析法研究4种制剂的体外释药动力学;同位素标记阿苯达唑纳米粒在小鼠脏器组织分布和生物利用度。结果ABZ-PBCA-NP体外释药遵循Higuchi方程,加入PVP制成的载药纳米粒符合双指数函数。纳米粒的载药方式遵循Langmuir吸附方程。小鼠ig 3H-ABZ-PBCA-NP后, 药物的肝、脾中的靶向指数分别为11.4和3.9,阿苯达唑纳米粒和混悬剂相对生物利用度分别为76.0%和36.9%。结论制备纳米粒加入PVP可使药物具吸附性和分散性,纳米粒载体可降低药物与血浆蛋白结合率,增强药物的肝、脾脏器靶向性和延缓释药。  相似文献   

11.
阿昔洛韦眼用壳聚糖纳米粒的制备及家兔生物利用度研究   总被引:4,自引:0,他引:4  
目的:应用离子交联法制备阿昔洛韦壳聚糖纳米粒,考察其体外性质及其经家兔眼部给药后的生物利用度.方法:壳聚糖与三聚磷酸钠通过离子交联作用制备纳米粒,考察了纳米粒的粒径、Zeta电位、包封率以及体外释放性质,通过家兔眼部结膜囊内给药,考察眼房水中药物浓度的变化,并与市售阿昔洛韦滴眼液相比较.结果:阿昔洛韦壳聚糖纳米粒的平均粒径为235 nm,多分散系数为0.256,Zeta电位为43.9 mV;平均包封率为15.6%,平均载药量为1.9%;家兔眼部给药后,AUC0→6 h达到3.69μg·h-1·mL-1,是市售制剂的2.4倍.结论:实验初步证实制备的壳聚糖纳米粒可以促进阿昔洛韦的眼部吸收.  相似文献   

12.
目的 以叶酸修饰的生物可降解材料乳酸-羟基乙酸共聚物(PLGA-PEG-FOL)为载体,构建紫杉醇靶向纳米粒并进行评价。方法 采用乳化-分散法,以溶液稳定性、粒径和包封率为评价指标,通过考察乳化剂的用量、有机相种类、水相与有机相比例、聚合物分子量、药载比、剪切速度等因素对纳米粒制备的影响,确定最优处方和制备工艺,并对纳米粒的形态、粒径、Zeta电位、包封率及载药量进行评价。结果 合成了载体PLGA-PEG-FOL;制备的紫杉醇靶向纳米粒为均匀球形粒子,粒径为(88.2±6.7)nm,Zeta电位为(56.5±4.2)mV,包封率为(92.9±3.2)%,载药量为(4.8±1.3)%。结论 纳米粒制备方法简便易行,重现性好。制备的纳米粒大小均匀,粒度分布较窄,包封率和载药量较高。  相似文献   

13.
吴燕  田姗  孔健  徐荣 《安徽医药》2016,20(10):1852-1856
目的 以叶酸修饰的生物可降解材料乳酸-羟基乙酸共聚物(PLGA-PEG-FOL)为载体,构建紫杉醇靶向纳米粒并进行评价。方法 采用乳化-分散法,以溶液稳定性、粒径和包封率为评价指标,通过考察乳化剂的用量、有机相种类、水相与有机相比例、聚合物分子量、药载比、剪切速度等因素对纳米粒制备的影响,确定最优处方和制备工艺,并对纳米粒的形态、粒径、Zeta电位、包封率及载药量进行评价。结果 合成了载体PLGA-PEG-FOL;制备的紫杉醇靶向纳米粒为均匀球形粒子,粒径为(88.2±6.7)nm,Zeta电位为(56.5±4.2)mV,包封率为(92.9±3.2)%,载药量为(4.8±1.3)%。结论 纳米粒制备方法简便易行,重现性好。制备的纳米粒大小均匀,粒度分布较窄,包封率和载药量较高。  相似文献   

14.
目的探索基于马来酰亚胺与肠道黏蛋白共价结合的肠道黏附纳米粒对药物口服生物利用度的影响,构建新型纳米载体用于增强药物口服吸收。方法通过乳化溶剂挥发法制备包载荧光剂香豆素6的马来酰亚胺肠道黏附纳米粒,对制备的黏附纳米粒与非黏附聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic acid),PLGA]纳米粒的外观、粒径进行了表征,通过香豆素6考察了纳米粒的体外释放、肠灌流及体内药动学。结果制备的马来酰亚胺肠道黏附纳米粒呈类球形,粒径为(139.8±2.650)nm,PDI为(0.071±0.062),Zeta电位为(-5.793±0.737)mV。在4℃条件下放置30 d稳定性良好,体外释放实验表明马来酰亚胺纳米粒释放缓慢,没有突释效应。药动学实验表明香豆素6马来酰亚胺纳米粒的体内消除半衰期(t1/2)和药时曲线下面积(AUC0-t)分别是香豆素6非黏附对照纳米粒组的1.17倍和1.42倍,药时曲线下面积(AUC0-t)是香豆素6溶液剂的1.76倍。结论基于马来酰亚胺与肠道黏蛋白共价结合的肠道黏附纳米粒能延长药物肠道滞留时间,增加口服吸收,提高药物口服生物利用度。  相似文献   

15.
多西紫杉醇白蛋白纳米粒的制备及体外评价   总被引:5,自引:0,他引:5  
张晓燕  平其能 《药学进展》2008,32(5):223-228
目的:制备多西紫杉醇白蛋白纳米粒,考察白蛋白和多西紫杉醇的处方量及乙醇加入量等因素对其形态、粒径、Zeta电位、收率、包封率、载药量和体外释药特性的影响,并对处方工艺进行优化。方法:采用去溶剂化-化学交联法制备多西紫杉醇白蛋白纳米粒,透射电镜观察纳米粒形态,马尔文激光粒度仪测定其粒径分布及Zeta电位,考马斯亮兰-酶标仪法测定纳米粒收率,HPLC法测定纳米粒包封率和载药量;以累积释药百分率为指标,通过方程拟合释药曲线,考察制剂的体外释药特性。处方优化采用星点设计-效应面优化法,应用SAS统计软件对数据进行处理。结果:优化处方制得的纳米粒为类球形,平均粒径65.3nm,Zeta电位-31.4mV,纳米粒收率95.0%,包封率74.3%,载药量4.65%,制剂24小时体外累积释药百分率为74.4%。结论:难溶性抗癌药物多西紫杉醇可以采用去溶剂化-化学交联法制备成白蛋白纳米粒,其粒径小,稳定性高,可显著提高多西紫杉醇在水相中的浓度。其优化处方中药物的释放显著慢于原料药磷酸盐缓冲溶液的释放,具有缓释效果。  相似文献   

16.
药物纳米粒常被用于改善口服给药的生物利用度,但因胃肠道中的黏液层、P糖蛋白(P-gp)外排及紧密连接等生理屏障,纳米粒改善口服药物生物利用度的程度有限。功能性材料修饰的纳米粒因其功能性、可修饰和多样性成为了口服药物载体策略的研究热点。该研究简述了限制药物生物利用度的因素,重点总结了通过改善药物理化性质和克服生物屏障改善药物生物利用度的功能性纳米材料,以期为难溶性药物的载药策略研究提供参考和文献支持。  相似文献   

17.
《中南药学》2015,(8):815-819
目的制备甘草酸二铵(DG)/三甲基化壳聚糖(TMC)纳米粒并研究其基本性质。方法利用带正电荷的TMC与带负电荷的DG的静电相互作用制备DG/TMC纳米粒,以激光粒度测定仪和透射电镜(TEM)测定纳米粒的粒径和形态,以透析法测定纳米粒的释药度。结果 DG溶于p H 6.8~8.0的水中,浓度为50 g·L-1,TMC溶于p H 6.8~8.0的水中,浓度为30 g·L-1,室温下混合,温和搅拌,制得类球形DG/TMC纳米粒,平均粒径为72.8 nm,zeta电位为+29.81 m V。在p H=1盐酸、p H=7磷酸盐缓冲液、0.9%Na Cl溶液和蒸馏水中24 h累计释放度依次为99.2%、89.6%、85.8%和35.6%,口服相对生物利用度为220%,半衰期明显延长。结论 DG/TMC纳米粒制备方法简单可行,其释放行为与释放介质的离子强度及种类有关,具有缓释特点,能够改善DG的口服吸收。  相似文献   

18.
目的:优化紫杉醇聚乳酸-羟基乙酸(PLGA)纳米粒处方和制备工艺.方法:以PLGA为载体,采用溶剂扩散法制备紫杉醇PLGA纳米粒,用32满因子设计实验,考察因素PLGA在有机相中的浓度和理论载药量对纳米粒的粒径、载药量和包封率的影响,实验数据分别采用线性方程和二次多项式拟合,根据最佳数学模型绘制效应面并选出最优处方.结果:2个影响因素和3个评价指标之间存在定量关系,最优处方为:紫杉醇的理论载药量为9.09%、有机相中PLGA浓度为2%,制备得到的纳米粒粒径为281 nm,实际载药量为7.73%,包封率为57.43%.结论:采用因子设计-效应面法完成了紫杉醇纳米给药系统的多目标同步优化.  相似文献   

19.
目的:构建紫杉醇-甘草酸纳米胶束(paclitaxel-loaded glycyrrhizic acid micelles)并对其理化性质及口服生物利用度进行考察。方法:所制备纳米胶束的包封率和载药量通过高效液相色谱法检测并计算;采用动态光散射仪测定其粒径分布;以紫杉醇溶液作为对照组,考察纳米胶束口服给药后药动学的变化;采用在体in-situ肠封闭法考察不同肠道对紫杉醇的吸收差异。结果:采用超声分散法制备载紫杉醇-甘草酸纳米胶束大小均匀,平均粒径为(245.42±5.62) nm;药物胶束的包封率为90.22%±0.27% (n=3),载药量为7.90%±0.10%(n=3);与对照组相比,纳米胶束口服生物利用度提高约6倍,很大程度上是由于紫杉醇在空肠以及结肠上吸收的增加引起。结论:该方法所制备的纳米胶束制剂能有效提高紫杉醇口服生物利用度,发挥甘草酸药物载体的特点以及药用安全性的优点,该纳米胶束可作为紫杉醇新的药物传递系统,具有临床应用前景。  相似文献   

20.
目的制备布洛芬聚氰基丙烯酸烷酯纳米粒(IBU-PACA-NP)。方法采用乙醚界面缩聚法制备布洛芬聚氰基丙烯酸烷酯纳米粒;以包封率、载药量为指标,在单因素考察处方及工艺条件基础上,采用正交设计法L9(34)对处方进行优化。结果按优化处方制备的纳米粒平均粒径为166 nm,包封率为96.60%,载药量为17.83%,Zeta电位为-20.2 mV。结论乙醚界面缩聚法制备的布洛芬聚氰基丙烯酸烷酯纳米粒粒径小,包封率和载药量符合要求,可用于口服或注射给药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号