首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45064篇
  免费   4848篇
  国内免费   3209篇
耳鼻咽喉   609篇
儿科学   665篇
妇产科学   277篇
基础医学   3573篇
口腔科学   674篇
临床医学   5809篇
内科学   4597篇
皮肤病学   756篇
神经病学   1602篇
特种医学   1783篇
外国民族医学   6篇
外科学   4262篇
综合类   11314篇
现状与发展   12篇
一般理论   1篇
预防医学   4395篇
眼科学   776篇
药学   5258篇
  66篇
中国医学   3971篇
肿瘤学   2715篇
  2024年   142篇
  2023年   657篇
  2022年   1571篇
  2021年   2312篇
  2020年   1991篇
  2019年   1254篇
  2018年   1427篇
  2017年   1614篇
  2016年   1306篇
  2015年   2150篇
  2014年   2758篇
  2013年   3099篇
  2012年   4180篇
  2011年   4509篇
  2010年   3593篇
  2009年   3167篇
  2008年   3295篇
  2007年   2974篇
  2006年   2614篇
  2005年   2109篇
  2004年   1433篇
  2003年   1295篇
  2002年   987篇
  2001年   806篇
  2000年   596篇
  1999年   318篇
  1998年   141篇
  1997年   140篇
  1996年   120篇
  1995年   105篇
  1994年   84篇
  1993年   43篇
  1992年   53篇
  1991年   47篇
  1990年   33篇
  1989年   40篇
  1988年   28篇
  1987年   27篇
  1986年   29篇
  1985年   25篇
  1984年   27篇
  1983年   4篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
991.
目的 建立高效、快速、简便的白念珠菌临床分离株三重保守基因微卫星分型技术。方法 以煮沸法处理的71株白念珠菌野生株为模板,三色荧光分别标记保守基因CDC3、EF3和HIS3微卫星序列引物,PCR扩增,产物行聚丙烯酰胺凝胶电泳。由基因扫描分析软件获取片段的精确长度,Genotyper软件行基因分型。结果 71株白念珠菌野生株行CDC3、EF3和HIS3基因分型分别获得5、10、8种等位基因,7、8、9种基因型,三位点联合分析共获得14种菌株基因型。结论 白念珠菌多重保守基因微卫星分型能从基因水平快速、高效的对临床分离株进行分型,对白念珠菌的流行病学研究有重要价值。  相似文献   
992.
目的 研究中草药缬草提取物缬草波春联合Caspases抑制剂诱导MKN45胃癌细胞凋亡的作用。方法 将MKN45胃癌细胞分成4组:第1组加入同体积的生理盐水为对照;第2组分别加入浓度为10μM的Caspases-3、-8、-9抑制剂;第3组加入浓度为100 mg/L的缬草波春;第4组加入浓度为10 μM的Caspases-3、-8、-9抑制剂+浓度为100 mg/L的缬草波春混合物。药物作用24小时、48小时、72小时后,用流式细胞计分别检测凋亡率。结果 24、48、72小时作用后,第2组诱导MKN45细胞的凋亡率与对照组相似(P>0.05);第3组诱导MKN45细胞的凋亡率明显高于照组相(P<0.01);第4组中缬革波春联合Caspases-3、-9抑制剂诱导MKN45细胞的凋亡率均与对照组相似(P>0.05);缬草波存与Caspases-8抑制剂联合应用组诱导MKN45细胞的凋亡率明显高于对照组比(P<0.01),与第2组相似(P>0.05)。结论 缬草波春能诱导MKN45胃癌细胞凋亡,诱导凋亡能被Caspases-3、-9抑制剂抑制,Casoases-8抑制剂对缬草波春诱导的调亡无影响。  相似文献   
993.
血水草杀螺成分-血水草生物碱(ECA)的提取   总被引:4,自引:3,他引:4  
目的 从血水草中提取杀螺有效成分—血水草生物碱(ECA)。方法 采用70%乙醇渗漉提取,用减压浓缩、酸解、盐析等方法纯化,提取ECA原粉。结果 ECA原粉的提取率为1.009%.结论 本提取方法可靠,设备及工艺流程简单,提取条件易控制,且成本低,便于开发应用。  相似文献   
994.
Worldwide cardiovascular diseases such as stroke and heart disease are the leading cause of mortality. While guidewire/catheter-based minimally invasive surgery is used to treat a variety of cardiovascular disorders, existing passive guidewires and catheters suffer from several limitations such as low steerability and vessel access through complex geometry of vasculatures and imaging-related accumulation of radiation to both patients and operating surgeons. To address these limitations, magnetic soft continuum robots (MSCRs) in the form of magnetic field–controllable elastomeric fibers have recently demonstrated enhanced steerability under remotely applied magnetic fields. While the steerability of an MSCR largely relies on its workspace—the set of attainable points by its end effector—existing MSCRs based on embedding permanent magnets or uniformly dispersing magnetic particles in polymer matrices still cannot give optimal workspaces. The design and optimization of MSCRs have been challenging because of the lack of efficient tools. Here, we report a systematic set of model-based evolutionary design, fabrication, and experimental validation of an MSCR with a counterintuitive nonuniform distribution of magnetic particles to achieve an unprecedented workspace. The proposed MSCR design is enabled by integrating a theoretical model and the genetic algorithm. The current work not only achieves the optimal workspace for MSCRs but also provides a powerful tool for the efficient design and optimization of future magnetic soft robots and actuators.

Cardiovascular diseases such as stroke and heart disease are the leading cause of long-term disability and death worldwide, with an annual cost of over $300 billion in the United States alone (1, 2). Diverse cardiovascular diseases are treated with minimally invasive surgery (Fig. 1A), which is less traumatic and more effective than open surgery (36). The conventional minimally invasive treatments of cardiovascular diseases typically employ a passive guidewire and catheter with a preshaped tip that is manually operated under radioscopic imaging. For example, in mechanical thrombectomy, a surgeon usually inserts a guidewire/catheter combination from the patient’s femoral artery over the leg and navigates this combination using fluoroscopic imaging through the aorta into the target occluded artery (usually in the brain or lungs) for mechanical clot removal (7). As another example, in atrial fibrillation ablation, a surgeon usually threads a catheter into the patient’s heart, where the catheter’s tip applies high or low temperature to disrupt heart conduction that generates faulty electrical signals (8). This manual operation of passive guidewires and catheters, however, is often limited by low steerability through complex vasculatures, difficulty in accessing small branches, long operation times, and/or increased accumulated imaging-related radiation to both patients and operating surgeons (9). To overcome these challenges, immense efforts have been committed to exploring robotic-assisted minimally invasive treatments in a remotely operated manner. In particular, because of the untethered and biocompatible nature of magnetic fields, a promising robotic-assisted minimally invasive platform has recently emerged based on magnetic field–controllable elastomeric fibers—magnetic soft continuum robots (MSCRs) (1013).Open in a separate windowFig. 1.MSCRs for minimally invasive treatments. (A) Cardiovascular diseases in hard-to-reach areas across the human body where MSCRs can find utility. (B) Schematic illustration of the active bending of the MSCR navigating in a complex blood vessel. The workspace is defined as the area of attainable locations by the MSCR’s end effector via tuning the actuation magnetic field. (C) Schematic illustration of operating the MSCR at lesion tissues in atrial fibrillation ablation. (D) Schematic illustration of the distal portion of an MSCR in which hard-magnetic particles (e.g., NdFeB) are dispersed in the polymer matrix (e.g., silicone).An MSCR typically consists of a magneto-active distal portion that can be actively bent by tuning the actuation magnetic field and a nonmagnetized body that can be advanced or retracted by controlling the motor connected to the MSCR’s proximal end. In a typical minimally invasive treatment, a surgeon remotely controls the motor to advance the MSCR up to locations that require active steering, such as in front of branches of blood vessels (Fig. 1B) or lesion tissues (Fig. 1C) (14, 15). At these locations, the surgeon needs to remotely apply a magnetic field to bend the distal portion of the MSCR so that the MSCR’s end effector reaches the desired location. Thereafter, the surgeon further advances or operates the MSCR actively steered by the actuation magnetic field. Evidently, the steerability of an MSCR is largely determined by the set of attainable locations by its end effector via tuning the actuation magnetic field named the workspace of the MSCR (16, 17). A larger workspace gives a higher steerability of the MSCR in minimally invasive treatments.Existing MSCRs are mostly fabricated by embedding one or more permanent magnets in the distal portion of the MSCR (1825). More recently, a new type of MSCR has been developed by uniformly dispersing hard-magnetic particles in elastomeric fibers (16) (Fig. 1D). However, the workspaces of MSCRs with both embedded magnets and uniformly distributed hard-magnetic particles are still limited, mainly because of the lack of efficient design and optimization tools for MSCRs. Indeed, existing designs of MSCRs heavily rely on experimental trial and error or numerical simulations (26, 27) that are not ideal for design or optimization with a large number of design parameters. Hence, an efficient design strategy capable of maximizing the workspaces of MSCRs remains an important, yet unresolved, challenge in the field.Here, we report an evolutionary design strategy to maximize the workspaces of MSCRs by integrating theoretical modeling (17, 28) and the genetic algorithm (29) to identify the optimal magnetization and rigidity patterns within the MSCRs (Fig. 2A). We first develop a hard-magnetic elastica theory to calculate the deflections of an MSCR with a specific magnetization and rigidity pattern under uniform magnetic fields up to 40 mT applied along various directions in one plane (17) (SI Appendix, Fig. S1). Notably, 40 mT is a typical magnetic-field strength for operating MSCRs (16, 30). We then calculate the area of the workspace for this MSCR and repeat the calculations for MSCRs with various random magnetization and rigidity patterns. Thereafter, we only select the MSCRs with relatively large workspaces, mutate and cross over their magnetization and rigidity patterns to give a new generation of MSCRs, and then calculate the workspaces of the new generation of MSCRs (29). By repeating this evolutionary process over a few generations, we can achieve an optimal design of the MSCR with an unprecedented workspace. We further validate this evolutionary design of the MSCR by both finite element simulations and experiments.Open in a separate windowFig. 2.Designing MSCRs by programming their magnetization and rigidity pattern in the distal portion. (A) Each voxel is encoded with a specific remanent magnetization M by tuning its magnetic particle volume fraction ϕ. The direction of the remanent magnetization of all voxels is along the axial direction pointing to the distal tip. (B) The normalized magnetization strength M(ϕ)/M0 (Left, black) and shear modulus G(ϕ)/G0 (Right, red) of the MSCR as a function of particle volume fraction ϕ.  相似文献   
995.
Spatiotemporal regulation of signaling cascades is crucial for various biological pathways, under the control of a range of scaffolding proteins. The BNIP-2 and Cdc42GAP Homology (BCH) domain is a highly conserved module that targets small GTPases and their regulators. Proteins bearing BCH domains are key for driving cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, myoblast differentiation, and neuritogenesis. We previously showed that the BCH domain of p50RhoGAP (ARHGAP1) sequesters RhoA from inactivation by its adjacent GAP domain; however, the underlying molecular mechanism for RhoA inactivation by p50RhoGAP remains unknown. Here, we report the crystal structure of the BCH domain of p50RhoGAP Schizosaccharomyces pombe and model the human p50RhoGAP BCH domain to understand its regulatory function using in vitro and cell line studies. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-binding loop and a lipid-binding pocket that anchors prenylated RhoA. Interestingly, the β5-strand of the BCH domain is involved in an intermolecular β-sheet, which is crucial for inhibition of the adjacent GAP domain. A destabilizing mutation in the β5-strand triggers the release of the GAP domain from autoinhibition. This renders p50RhoGAP active, thereby leading to RhoA inactivation and increased self-association of p50RhoGAP molecules via their BCH domains. Our results offer key insight into the concerted spatiotemporal regulation of Rho activity by BCH domain–containing proteins.

Small GTPases are molecular switches that cycle between an active GTP-bound state and an inactive GDP-bound state and are primarily involved in cytoskeletal reorganization during cell motility, morphogenesis, and cytokinesis (1, 2). These small GTPases are tightly controlled by activators and inactivators, such as guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), respectively (3, 4), which are multidomain proteins that are themselves regulated through their interactions with other proteins, lipids, secondary messengers, and/or by posttranslational modifications (57). Despite our understanding of the mechanisms of action of GTPases, GAPs, and GEFs, little is known about how they are further regulated by other cellular proteins in tightly controlled local environments.The BNIP-2 and Cdc42GAP Homology (BCH) domain has emerged as a highly conserved and versatile scaffold protein domain that targets small GTPases, their GEFs, and GAPs to carry out various cellular processes in a spatial, temporal, and kinetic manner (815). BCH domain–containing proteins are classified into a distinct functional subclass of the CRAL_TRIO/Sec14 superfamily, with ∼175 BCH domain–containing proteins (in which 14 of them are in human) present across a range of eukaryotic species (16). Some well-studied BCH domain–containing proteins include BNIP-2, BNIP-H (CAYTAXIN), BNIP-XL, BNIP-Sα, p50RhoGAP (ARHGAP1), and BPGAP1 (ARHGAP8), with evidence to show their involvement in cell elongation, retraction, membrane protrusion, and other aspects of active morphogenesis during cell migration, growth activation and suppression, myoblast differentiation, and neuritogenesis (1721). Aside from interacting with small GTPases and their regulators, some of these proteins can also associate with other signaling proteins, such as fibroblast growth factor receptor tyrosine kinases, myogenic Cdo receptor, p38-MAP kinase, Mek2/MP1, and metabolic enzymes, such as glutaminase and ATP-citrate lyase (1726). Despite the functional diversity and versatility of BCH domain–containing proteins, the structure of the BCH domain and its various modes of interaction remain unknown. The BCH domain resembles the Sec14 domain (from the CRAL-TRIO family) (16, 27, 28), a domain with lipid-binding characteristics, which may suggest that the BCH domain could have a similar binding strategy. However, to date, the binding and the role of lipids in BCH domain function remain inconclusive.Of the BCH domain–containing proteins, we have focused on the structure and function of p50RhoGAP. p50RhoGAP comprises an N-terminal BCH domain and a C-terminal GAP domain separated by a proline-rich region. We found that p50RhoGAP contains a noncanonical RhoA-binding motif in its BCH domain and is associated with GAP-mediated cell rounding (13). Further, we showed previously that deletion of the BCH domain dramatically enhanced the activity of the adjacent GAP domain (13); however, the full dynamics of this interaction is unclear. Previously, it has been reported that the BCH and other domains regulate GAP activity in an autoinhibited manner (18, 21, 29, 30) involving the interactions of both the BCH and GAP domains, albeit the mechanism remains to be investigated. It has also been shown that a lipid moiety on Rac1 (a Rho GTPase) is necessary for its inactivation by p50RhoGAP (29, 31), which may imply a role in lipid binding. An understanding of how the BCH domain coordinates with the GAP domain to affect the local activity of RhoA and other GTPases would offer a previously unknown insight into the multifaceted regulation of Rho GTPase inactivation.To understand the BCH domain–mediated regulation of p50RhoGAP and RhoA activities, we have determined the crystal structure of a homologous p50RhoGAP BCH domain from S. pombe for functional interrogation. We show that the BCH domain adopts an intertwined dimeric structure with asymmetric monomers and harbors a unique RhoA-interacting loop and a lipid-binding pocket. Our results show that the lipid-binding region of the BCH domain helps to anchor the prenylation tail of RhoA while the loop interacts directly with RhoA. Moreover, we show that a mutation in the β5-strand releases the autoinhibition of the GAP domain by the BCH domain. This renders the GAP domain active, leading to RhoA inactivation and the associated phenotypic effects in yeast and HeLa cells. The released BCH domain also contributes to enhanced p50RhoGAP–p50RhoGAP interaction. Our findings offer crucial insights into the regulation of Rho signaling by BCH domain–containing proteins.  相似文献   
996.
老年心血管病联合介入诊疗技术的临床应用   总被引:2,自引:0,他引:2       下载免费PDF全文
目的 评价联合介入技术在老年心血管病诊疗中的有效性和安全性。方法 对连续2年的成年介入病例按年龄分为老年组和普通组,比较如下指标:①年龄;②性别;③心血管病种类;④介入指征;⑤联合介入情况;⑥总操作时间;⑦透视时间;⑧成功率;⑨并发症率;⑩病死率。结果 ①全组1。785例患中,具备联合介入诊疗指征14.5%(258/1785),普通组4.6%(44/961),老年组26.0%(214/824)。其中50%(129/258)实际施行联合介入诊疗,普通组59%(26/44),老年组48.1%(103/214);②老年组冠脉、外周和肾血管支架置入、起搏器安装及心肌激光打孔操作明显多于普通组,导管射频消融、瓣膜球囊扩张和先心病介入封堵操作明显少于普通组,老年组需接受≥2项联合介入操作明显多于普通组;③老年组和普通组联合介入诊疗的成功率、并发症和病死率基本相同,但前的费用、操作和透视时间及造影剂用量明显多于后。结论 ①与普通组相比,老年心血管患需进行联合介入诊疗术的比例明显增高;②对老年心血管病患谨慎施行合理的联合介入诊疗方案能取得与单一介入方案相同的手术效果,并发症和病死率增加不明显;③老年心血管病联合介入诊疗术的缺点是手术费用高、操作和透视时间长及造影剂用量大。  相似文献   
997.
998.
上海市成人脂肪肝患病率及其危险因素流行病学调查   总被引:231,自引:1,他引:231  
目的 明确上海市成人脂肪肝的患病率及其主要危险因素。 方法 通过随机多级分层整群抽样对杨浦区和浦东新区各4个居委会16岁以上居民进行调查,内容涉及问卷咨询、体格检查、75 g葡萄糖耐量试验、血脂检测、以及肝脏实时超声检查。 结果 3175名成人完成调查,约占上海市人口的2.26/10000。其中男性1218名,女性1957名,平均年龄(52.4±15.1)岁。B超共检出脂肪肝661例,占20.82%,其中酒精性、可疑酒精性、非酒精性脂肪肝分别占3.48%、4.08%及92.43%。经年龄和性别调整后,上海市成人脂肪肝患病率为17.29%,酒精性脂肪肝、可疑酒精性脂肪肝、非酒精性脂肪肝患病率分别为0.79%、1.15%、15.35%。无论是男性还是女性,脂肪肝患病率均随年龄增长而增加,50岁之前男性脂肪肝患病率显著高于女性(x2=13.934,P<0.01),而50岁以后女性脂肪肝患病率显著高于男性(x2=4.146,P<0.05)。脂肪肝组年龄、体重指数(BMI)、腰围、血压、空腹及餐后血糖、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、肥胖、糖尿病、高血压病、血脂异常和胆石症患病率等均显著高于对照组,高密度脂蛋白胆固醇(HDL-C)水平以及文化程度显著低于对照组。多元回归分析显示:男性、文化程度、腰围、BMI、HDL-C、TG、空腹血糖水平、糖尿病、  相似文献   
999.
目的 比较双对吻挤压(DK crush)和经典挤压技术治疗冠状动脉分叉病变的临床效果.方法 311例真性分叉病变患者随机分入DK crush组(n=155)和经典挤压组(n=156),随访时间8个月.一级及二级终点分别为主要心脏不良事件(MACE,包括心肌梗死、心原性死亡和靶病变血运重建)和血管直径再狭窄及晚期丢失.结果 DK crush组糖尿病患者较多.经典挤压组及DKcrush组最终对吻扩张(FKBI)成功率分别为76%和100%(P<0.001).DK crush术式的不足包括造影剂用量大(P=0.04)、球囊数量多(P<0.01)、手术时间长(P<0.001),但是对吻扩张不满意率显著减少(27.6%比6.3%,P<0.01).临床随访率为100%,冠状动脉造影随访率为82%.经典挤压组累计再狭窄率为32.3%,而DK crush组为20.3%(P=0.01),经典挤压组分支血管再狭窄率高(24.4%比12.3%,P=0.01),而两组间主干血管再狭窄率差异无统计学意义.经典挤压组术后8个月时的累计MACE发生率为24.4%(FKBI失败组为35.9%,FKBI成功组为19.7%),显著高于DK crush组(11.4%,P=0.02).经典挤压组血栓栓塞率为3.2%(FKBI失败组为5.1%,FKBI成功组为1.7%),而DK crush组为1.3%(P>0.05).经典挤压组术后8个月时无靶病变血运重建生存率为75.4%(FKBI失败组为71.2%,FKBI成功组为77.6%),而DK crush组为89.5%(P=0.002).结论 DK crush可能是治疗冠状动脉分叉病变的较佳术式.  相似文献   
1000.
INTRODUCTIONHepatolenticulardegeneration(HLD)isanautosomalrecesivedisorderthatcauseschangesinthebasalgangliaandliverthatrespe...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号