首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
目的:测定大鼠血浆中鸡屎藤次苷的含量,并研究其在大鼠体内的药动学过程.方法:采用HPLC -UV法测定大鼠尾静脉注射给药后血浆中鸡屎藤次苷的血药浓度.色谱条件为:DiamonsilTM C18柱(250 mm×4.6 mm,5μm),流动相:甲醇一乙腈-0.1%冰醋酸(3:2:95,v/v/v),流速:1.0 mL·min-1,检测波长:230 nm.通过BAPP2.0软件求算其药动学参数.结果:鸡屎藤次苷血浆浓度在0.2~40μg·mL-1(Y=0.07321X-0.00939,γ=0.9940)范围内线性关系良好.日内精密度不大于7.1%,日间精密度不大于13.5%,准确度RE值在一4.5%~1.8%之间.鸡屎藤次苷提取回收率为64.5%~73.1%,内标物提取回收率为74.5%.主要药动学参数为t1/2=(33.5+4.39) min,AUC0-180mm=(922±129) μg·min· mL-1.结论:该法专属、准确、灵敏,适用于鸡屎藤次苷在大鼠体内的药动学研究,为进一步研究鸡屎藤次苷体内药动学行为提供了依据.  相似文献   

2.
积雪草酸大鼠体内药动学考察   总被引:3,自引:1,他引:2  
目的建立大鼠血浆中积雪草酸(asiatic acid,AA)的柱前衍生化HPLC,探讨AA在大鼠体内的药动学。方法 SD大鼠,♂,尾静脉注射AA(10mg·kg-1),于给药后不同时间采取血浆,经DIKMA Proelut PLS柱固相萃取,柱前衍生化HPLC测定血浆中AA浓度(以甘草次酸为内标),药物统计软件(PKS 1.0)拟合统计药动学参数。结果血药浓度在0.1~20μg·m L-1内线性良好(r=0.999 6),平均提取回收率为71.1~79.9%,日内、日间精密度RSD均<13%,样品在-20℃放置,经2次冻融循环后基本稳定。AA在大鼠体内药-时曲线符合一室开放模型,主要药动学参数为:tmax=2.0min,Cmax=14.7μg·m L-1,t1/2=35.1min,AUC0-t=217.0μg·min·m L-1,AUC0-∞=234.3μg·min·m L-1。结论 AA在大鼠体内消除迅速,所建立的提取及柱前衍生化HPLC适用于体内AA的测定。  相似文献   

3.
目的:建立LC-MS/MS法测定达芦那韦在大鼠血浆中的浓度并进行药动学研究。方法:以卡马西平为内标,采用甲醇沉淀蛋白方法处理样品,富集血浆样品中的达芦那韦,用LC-MS/MS进行检测。色谱柱为Inertsil?ODS3 C18柱(150 mm×4.6 mm,5μm),C18保护柱(50 mm×4.6 mm),流动相:甲醇-水溶液(90∶10),流速:0.5 ml·min^-1,柱温:30℃,采用电喷雾电离源(ESI),正离子模式,多反应监测(MRM)扫描分析,达芦那韦和内标的离子迁移通道分别为m/z 548.5→530.5[碰撞能量(CE)=25 eV,去簇电压(DP)=80 V],m/z 237.1→194.1(CE=18 eV,DP=150 V);大鼠口服给药后,分别于各时间点取大鼠血浆,测定血浆中的药物含量,并用DAS 2.0软件计算其药动学参数。结果:达芦那韦在0.01~10.0μg·ml^-1范围内线性良好,提取回收率≥92.13%,日内与日间精密度RSD≤6.6%。大鼠口服达芦那韦后AUC(0-t)为(1416.23±370.13)mg·L^-1·min,AUC(0-∞)为(1493.70±374.15)mg·L^-1·min,tmax为360.00 min,Cmax为(3.03±0.85)μg·ml^-1。结论:该方法方便、快速、精确,能够应用于大鼠血浆中达芦那韦的测定及药动学研究。  相似文献   

4.
目的建立测定人血浆中紫杉醇浓度的液相色谱-串联质谱(LC-MS/MS)法。方法 8例晚期实体癌患者,进行单次静脉滴注注射用紫杉醇胶束(300 mg·m-2),采集血浆样本并测定其中紫杉醇的浓度。血浆样本以氘5-紫杉醇为内标,血浆经直接沉淀后进样分析,选用CAPCELL PAK C18 MGIII(100 mm×2.0 mm,5μm)为分析柱,以0.2%甲酸的水溶液-乙腈溶液=40∶60(V/V)为流动相,流速为0.4 m L·min-1。选用三重四级杆串联质谱仪的多重反应监测(MRM)扫描方式进行监测,电喷雾离子化源,正离子方式。并采用Phoenix Win Nonlin 6.2软件对数据进行处理,计算药动学参数。结果血液中紫杉醇的线性范围10~20 000μg·L-1。日内、日间RSD均小于8%,平均提取回收率在89.5%~97.7%范围内。内标校正基质因子为0.888 7~1.033,RSD<4%。应用此法,检测8例晚期实体癌患者静脉滴注注射用紫杉醇胶束(300 mg·m-2)所得主要药动学参数:ρmax为(3 872±1 062)μg·L-1,AUC0-∞为(14 603±3 390)μg·h·L-1,t1/2为(18.3±6.4)h,CL为(22.0±5.0)L·h-1·m-2。结论建立的LC-MS/MS测定人血浆中紫杉醇浓度的方法灵敏度高、专一性好、操作简单。  相似文献   

5.
目的 建立快速、灵敏的高效液相色谱-质谱法测定大鼠血浆中五味子醇乙的浓度,并研究其在大鼠体内的药动学变化规律.方法 以地西泮为内标,血浆样品经乙醚萃取后进行高效液相色谱-质谱分析,采用Hypersil-C18色谱柱(150mm×4.6mm,5μm),甲醇-水[72:28)为流动相,检测离子为399.00(五味子醇乙[M+H-H2O]+),284.90(内标地西泮[M+H]+.结果 血浆标准曲线线性范围为5·0~250 ng/mL(r=0.995 7),最低定量下限为5.0 ng/mL.五味子醇乙的提取回收率不小于78.80%,高、中、低3种浓度的日内、日间精密度RSD均小于15%(n=6),结论该方法选择性强、灵敏度高,适用于大鼠血浆中五味子醇乙浓度测定和临床药动学研究.  相似文献   

6.
目的建立测定犬血浆中白屈菜红碱浓度的LC-MS方法,研究白屈菜红碱静脉注射后体内药动学特征。方法采用Agilent C18(50 mm×2.1 mm,5μm)分析柱,以乙腈-0.75%醋酸水溶液(30∶70,V/V)为流动相,选择离子(SIR)检测方式;以白屈菜碱为内标物,测定静脉给药后犬血浆中白屈菜红碱的浓度,用3P87药动学计算程序处理数据。结果血浆中白屈菜红碱的线性范围为0.05~6.4 mg.L-1,最低定量限可达15μg.L-1,血浆中白屈菜的方法回收率在87%以上,日内和日间的RSD均<10%。结论本法准确、灵敏,可用于白屈菜红碱的血浆浓度的测定和药动学研究。  相似文献   

7.
目的 建立测定KJY-01大鼠血浆中药物浓度的高效液相色谱-电喷雾离子化-质谱(HPLC-ESI-MS)联用的分析方法,对其进行大鼠体内的药动学研究.方法 取大鼠血浆50μL,加入内标酮康唑,用甲醇提取后取上清液吹干,用80%甲醇100μL溶解,取2μL进行HPLC-MS测定.色谱柱为Agilent ZORBAX Eclipse plus C18(150mm×2.1mm,5μm),流动相为20mmol醋酸铵(甲酸调节PH为3.75):甲醇(含1‰的甲酸)=22:78,流速为0.25mL/min,采用选择离子检测(SIM)法检测SQ109(m/z=331.3),KJY-01(m/z=475.4),酮康唑(内标,m/z=531.2).结果 SQ109的血药浓度在10~5000ng/mL范围内线性关系良好,最低检测限为10ng/mL,以质控样品计算,在各浓度水平下,此法的回收率均大于80%,日间和日内精密度小于20%,符合生物样品分析要求.结论 该方法操作简便、快速、灵敏、专属性强,可用于KJY-01的大鼠体内大批量样品定量分析及早期药动学研究.  相似文献   

8.
目的建立测定大鼠血浆中山奈酚质量浓度的HPLC法,并用于山奈酚经灌胃给药后在大鼠体内药动学研究。方法大鼠灌胃给予200 mg.kg-1山奈酚混悬液,于给药后不同时间采集血样,以非那西丁为内标,VC为抗氧剂,采用2 mol.L-1盐酸,80℃水浴水解30 min后用乙醚萃取的方法处理血浆样品。采用RP-HPLC法测定山奈酚血药质量浓度,色谱柱为Diamonsil C18柱(250 mm×4.6 mm,5μm),流动相为乙腈-体积分数为0.05%磷酸溶液(体积比40∶60),流速为1.0 mL.min-1,检测波长为370 nm,柱温为40℃。结果血浆中内源性物质对山奈酚测定无干扰,线性范围为0.050~10 mg.L-1,r=0.998 5,回收率、准确度及日内、日间精密度均符合生物样品测定要求,定量下限(LLOQ)为50μg.L-1。山奈酚主要药动学参数为AUC0-t=129.2 mg.h.L-1,ρmax=7.39mg.L-1,tmax=9.0 h,t1/2=8.3 h。结论该方法简便、快速、重复性好,适用于山奈酚大鼠血药质量浓度测定及体内药动学研究。  相似文献   

9.
高效液相色谱法测定人血浆中多西紫杉醇浓度   总被引:3,自引:0,他引:3  
目的:建立血浆中多西紫杉醇浓度的高效液相色谱测定方法。方法:以地西泮为内标,血浆样品经叔丁基甲醚3次提取,采用大连依利特C18(250mm×4.6mm,5μm)色谱分析柱;流动相为乙腈-水(47∶53);流速为1.0mL.min-1;检测波长为230nm;进样量为50μL。结果:地西泮和多西紫杉醇的保留时间分别是10.9min和13.2min,多西紫杉醇的最低检测质量浓度为20μg.L-1,血浆样品质量浓度在0.25~16.5mg.L-1范围内与峰面积比线性关系良好,回归方程为C=10.117X 0.428,r=0.9998(n=7),提取回收率为87.24%~92.64%(n=5),方法回收率为97.52%~101.44%,日内RSD为3.6%,2.4%,0.79%,日间RSD为3.8%,2.7%,1.4%,且稳定性良好。结论:本方法简便灵敏,干扰小,可用于多西紫杉醇血药浓度的测定。  相似文献   

10.
目的建立了测定大鼠血浆中格帕杀星浓度的RP HPLC荧光检测法和研究格帕杀星在大鼠体内的药物力学。方法以OPC 1 72 0 3为内标 ,血浆样品经液 -液萃取后进行HPLC检测。大鼠口服给药 ( 1 0mg/kg)后 ,测定不同时间点下格帕杀星的血药浓度 ,并经 3P87处理求得格帕杀星的主要药动学参数。结果与结论血浆标曲线方程为A1/A2 =1 0 35C -9× 1 0 -3 ,相关系数r =0 9999,回收率、准确度及日内、日间精密度均符合生物样品测定要求。格帕杀星的主要药动学参数分别为 :t1/ 2 (Ka) =0 2 6 2h,t1/ 2 (Ke) =4 5 73h ,Tmax=1 2 1 1h ,Cmax=0 6 1 9μmol/L,AUC =4 86 0h·μmol/L。  相似文献   

11.
黄珊珊  徐月红  汤晨懿  吴传斌 《广东药学》2012,(10):592-595,601
目的测定大鼠单剂量(12.55mg/kg)尾静脉注射多西他赛自微乳溶液和市售注射剂的血药浓度,比较2组的药动学行为;研究多西他赛自微乳溶液和市售注射剂在正常大鼠心,肝,脾,肺,肾中的分布情况。方法采用高效液相法测定sD大鼠给药后不同时问点的血药浓度以及组织分布情况。结果多西他赛自微乳溶液组和市售制剂组的主要药动学参数除表观分布容积VI/F外,t1/2β,CL、AUC0→∞、MRT0→∞均无显著性差异(P〉0.05)。结论自制微乳与市售制剂在大鼠体内具有相似的动力学特征,没有显著改善药物在大鼠体内的组织分布。  相似文献   

12.
目的建立大鼠血浆中多西他赛含量的测定方法,为药物动力学研究提供方法学基础。方法采用高效液相色谱-质谱联用法(HPLC-MS)。采用Diamonsil C18色谱柱(4.6 mm×200 mm,5μm),乙腈-质量分数为0.2%的甲酸水溶液(体积比66∶34)为流动相,流速为1.0 mL.min-1,柱温为25℃,进样量为20μL。质谱选择电喷雾电离源(ESI),选择离子监测(SRM)检测多西他赛母离子[M+H]+m/z809,内标格列吡嗪子离子m/z321。结果本法的线性范围为25~4 000μg.L-1;最低定量限为12.5μg.L-1;低、中、高质量浓度质控供试品的日内RSD均在4.09%~6.96%内,日间RSD均在5.34%~14.29%内,准确度相对误差(ER)均在-0.29%~-3.42%内,提取回收率均在85%以上。结论本法操作简便,灵敏度高,分析速度快,适用于大鼠血浆中多西他赛的含量测定。  相似文献   

13.
目的建立大鼠血浆中多西他赛含量测定的方法。方法采用蛋白沉淀-HPLC法。色谱柱:Hypersil C18柱(250 mm×4.6 mm,5μm);沉淀剂:体积分数80%的甲醇;流动相:甲醇-乙腈-水(体积比35∶40∶25);流速:1 mL.min-1;检测波长:233 nm。结果血浆中多西他赛检测方法的线性范围为0.05~50.0 mg.L-1,定量下限为50μg.L-1;血浆中多西他赛的提取回收率为87.80%,日内RSD<5.5%,日间RSD<8.5%。结论本法可用于多西他赛的药物动力学研究。  相似文献   

14.
HPLC法测定人血浆中多西紫杉醇浓度   总被引:1,自引:0,他引:1  
陈瑶  赵银  刘青青  邹俊 《中国药房》2011,(2):130-131
目的:建立测定人血浆中多西紫杉醇浓度的方法。方法:使用外标法,血浆样品经乙腈提取,振荡离心,过滤离心后进样以高效液相色谱法测定,色谱柱为KromasilC18,流动相为乙腈,流速为1.0mL·min-1,检测波长为230nm,柱温为室温,灵敏度为2.0AUFS,进样量为10μL。结果:多西紫杉醇血药浓度在0.167~3.333μg·mL-1范围内线性关系良好(r=0.9952),检测下限为0.167μg·mL-1;提取回收率在84.7%~87.5%之间,日内、日间RSD均<10%。结论:本方法简便、准确、快速,适用于多西紫杉醇血药浓度监测。  相似文献   

15.
Niosomes are vesicles formed by the self‐assembly of nonionic surfactants in aqueous dispersions. They can entrap drugs and have been used experimentally as sustained drug delivery systems. Apart from conventional spherical niosomes, various types of vesicle ultrastructures can be formed by varying the composition of the vesicle membrane. Hexadecyl diglycerol ether (C16G2), cholesterol, and poly‐24‐oxyethylene cholesteryl ether (Solulan C24) in the ratio 91:0:9 gave polyhedral niosomes, whereas spherical and tubular niosomes are produced at a composition ratio of 49:49:2. The mean size of both polyhedral and spherical/tubular niosomes were within the range of 6 to 9 µm. Both types of vesicle were visualized by cryo‐scanning electron microscopy. The properties of the two forms of niosomes were studied using luteinizing hormone releasing hormone (LHRH) as a model peptide. Analysis by high‐performance liquid chromatography demonstrated high entrapment of LHRH acetate in polyhedral niosomes when prepared by remote loading methods using pH or (NH4)2SO4 gradients; in contrast, only low entrapment was achieved by passive loading methods (direct hydration at pH 7.4 or pH 3.0, dehydration–rehydration, and reversed‐phase evaporation). In vitro studies demonstrated that both polyhedral and spherical/tubular niosomes were more stable in 5% rat skeletal muscle homogenate than in rat plasma. Also, polyhedral niosomes released more radiolabeled LHRH ([125|]LHRH) than spherical/tubular niosomes in both muscle homogenate and plasma. In clearance experiments in the rat, following intramuscular injection, both polyhedral and spherical/ tubular niosomes gradually released [125|]LHRH into the blood, but some radioactivity remained at the injection site for 25 and 49 h, respectively. In contrast, [125|]LHRH in phosphate buffered saline was completely cleared from the injection site at 2 h. The release of drug is sustained by both niosome formulations, but spherical/tubular niosomes possess more stable membranes than polyhedral niosomes due to the presence of cholesterol.  相似文献   

16.
贾莉  陈文  赵辉 《齐鲁药事》2013,32(6):336-337,347
目的建立多西他赛固体脂质纳米粒的含量测定方法。方法采用Hypersil ODS C18柱(4.6 mm×200mm,5μm),流动相为乙腈-水(60∶40,V/V),检测波长:228 nm,流速:1 mL.min-1。结果多西他赛在0.50~50.00μg.mL-1的浓度范围内,峰面积对浓度有良好的线性关系(R2=0.999 9,n=7),方法的日内与日间精密度RSD均<2%,回收率分别为98.81%、99.22%、101.5%。结论该方法具有简便、快速、准确的特点,可用于多西他赛固体脂质纳米粒的含量测定。  相似文献   

17.
The objective of this work was to investigate the preparation, characterization and pharmacokinetics of N-palmitoyl chitosan anchored docetaxel liposomes. To decrease toxic effects and improve antitumour efficacy of the drug, docetaxel has been incorporated in liposomes; the formulation, stability and pharmacokinetics of plain docetaxel liposomes (PDLs), PEGylated docetaxel liposomes (PEGDLs) and N-palmitoyl chitosan anchored docetaxel liposomes (NDLs) were compared. NDL was more stable than PDL and PEGDL in-vitro, especially in the presence of serum at 37 degrees C. The concentration of docetaxel in the plasma of rats after intravenous administration of docetaxel injection, PDL, PEGDL and NDL was studied by RP-HPLC. The pharmacokinetic behaviour of docetaxel injection, PDL, PEGDL and NDL were significantly different. These findings suggest that anchored liposomes could increase the stability of docetaxel in-vivo, as compared with plain liposomes, but the improvement was not more significant than PEGylated liposomes. N-Palmitoyl chitosan as a new polymeric membrane to anchor liposome was useful to stabilize liposomes containing anti-tumour drug.  相似文献   

18.
目的:研究静脉注射山柰酚后大鼠体内药动学特点。方法:将60只大鼠随机分为10个时间组,每组6只。均静脉注射给药,给药容积0.1mL·kg-1,剂量5mg·kg-1。于给药后1、3、5、10、20、40、80、120、180、240min分别从相应时间组每只大鼠取血0.5mL(n=6),采用高效液相色谱法检测大鼠血浆中山柰酚浓度;色谱柱为PhenomenexC1(8100mm×4.6mm,6μm),预柱为DikmaEasyⅡGuardC18Kit(8mm×4mm),流动相为乙腈-水(1∶2,V/V),流速为0.5mL·min-1,检测波长为370nm,柱温为35℃,进样量为80μL;采用3p97软件计算药动学参数。结果:大鼠静脉注射山柰酚的浓度-时间曲线符合二室模型,t1/2α=(0.95±0.35)min;t1/2β=(5.68±0.94)min;AUC0~t=(155.10±7.43)μg·min·mL-1;AUC0~∞=(199.84±14.07)μg·min·mL-1;CL=(45.90±1.90)mL·kg-1·min-1。结论:山柰酚原型在大鼠体内消除迅速,血药浓度下降快,30min后消除95%以上。  相似文献   

19.
Mannosylated niosomes as carrier adjuvant system for topical immunization   总被引:2,自引:0,他引:2  
The aim of this study was to develop mannosylated niosomes as a topical vaccine delivery carrier and adjuvant for the induction of both humoral and cellular immunity. Bovine serum albumin (BSA)-loaded niosomes composed of sorbitan monostearate/sorbitan trioleate (Span 60/Span 85), cholesterol and stearylamine as constitutive lipids were prepared by the reverse-phase evaporation method. The niosomes were coated with a modified polysaccharide O-palmitoyl mannan (OPM) to target them to Langerhan's cells, the major antigen presenting cells found in abundance beneath the stratum corneum. Prepared niosomes were characterized in-vitro for their size, shape, entrapment efficiency and ligand binding specificity. The immune stimulating activity was studied by measuring serum IgG titre and its subclasses (IgG2a/IgG1 ratio) following topical application of various niosomal formulations in albino rats. The results were compared with alum-adsorbed BSA following topical application and intramuscular injection. It was observed that niosomal formulations elicited a significantly higher serum IgG titre upon topical application as compared with topically applied alum adsorbed BSA (P<0.05). The serum IgG levels were significantly higher for the mannosylated niosomes as compared with plain uncoated niosomes (P<0.05). All formulations displayed a combined serum IgG2a/IgG1 response, which suggested that the formulations were capable of eliciting both humoral and cellular responses. The study signified the potential of OPM-coated niosomes as a topical vaccine delivery carrier and adjuvant. The proposed system would be simple, stable, and cost effective and might be clinically acceptable.  相似文献   

20.
目的建立RP-HPLC法测定多西他赛固体脂质纳米粒中多西他赛的含量。方法色谱柱:Century SIL BDS C18(4.6 mm×200 mm,5μm),检测波长:228 nm,流动相:乙腈-水(体积比为60∶40),流速:1.0 mL.min-1,柱温:室温。结果多西他赛与其他组分分离良好,线性1.05~21.0 mg.L-1(r=0.999 9),日内、日间精密度为1.12%、1.03%,平均回收率为99.3%,RSD=0.95%。结论可作为该制剂的质量控制方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号