首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
药物与体内各种转运体的相互作用是药物体内药动学性质的决定性因素之一。本文从肠道转运体出发,介绍了它们在药物吸收过程中的作用,旨在利用肠道转运体的作用增加药物向组织器官的靶向分布;利用转运体的作用改变药物的消除途径,从而减轻其毒副作用;利用转运体的作用进行新药设计从而避免药物间有害相互作用的产生;最后通过构建转运体的高通量筛选系统模型,进行新化合物筛选和候选药物的药动学机制研究,为新药的开发和临床合理化给药提供新的策略和思路。  相似文献   

2.
饶志  杨欢  武新安 《中国医院药学杂志》2012,(14):1144-1146,1158
目的:综述转运体在药物胆汁排泄中的作用。方法:以近几年国内外研究文献为基础,从转运体介导药物的胆汁排泄过程、介导药物胆汁排泄的转运体、药物相互作用、转运体的基因多态性等方面进行综述。结果:转运体对药物体内经胆汁排泄过程、临床用药安全性、用药后的个体差异等方面均存在影响。结论:随着对转运体认识的不断深入,其将在药物设计、临床合理用药、个体化治疗等方面发挥重要作用。  相似文献   

3.
转运体是细胞膜上的功能性蛋白,在肾脏中表达广泛,对许多内源性或外源性物质的肾脏分泌及重吸收起到了至关重要的作用。许多药物(包括有机阴离子药物、有机阳离子药物及肽类药物等)在肾脏排泄的过程中,经主要集中在近端肾小管的转运体主动转运介导。临床合用某些药物时可能在肾脏发生转运体介导的相互作用。从肾脏主要转运体的分布及功能出发,综述其在药物肾脏排泄中的作用。  相似文献   

4.
肾脏是机体重要器官之一,主要承担着体内代谢产物、药物以及毒物等物质的排泄。因此明确各物质在肾脏排泄机制有利于提高药物的安全性,避免不良反应,可为指导临床合理用药提供理论依据。本文介绍了肾脏中介导药物分泌与重吸收的转运体,阐述了通过体内、体外方法预测药物经肾脏转运体在肾脏的转运以及排泄机制。此外,还概括了研究肾脏转运体的主要研究方法,为基础以及临床实验提供参考。  相似文献   

5.
宋晓翰  王江  柳红 《药学学报》2021,(2):432-444
转运体会对药物在人体中的转移和分布产生极大的影响。一方面可溶性载体转运体可以将药物转运进入组织器官,从而提升药物生物利用度以及改变药物的组织分布;另一方面,细胞上的ATP结合盒转运体会将某些药物排出细胞,从而降低细胞内药物浓度,产生耐药性。本文总结了人体中几种重要的药物转运体的底物特征以及针对药物转运体进行药物设计的策略,包括前药修饰提高生物利用度、引入酸性基团改善肝脏选择性、改善化合物极性降低外排比等。  相似文献   

6.
近年来,对体内药物转运体的研究取得了重大进展,越来越多的转运体被发现及研究,其对药物的跨膜转运,具有重要的意义。各种转运体包括摄取转运体和外排转运体对药物的体内过程以及药物相互作用均有着重要影响。研究表明大多数抗生素的体内过程都与转运体和代谢酶有关,因此,归纳总结了转运体和代谢酶在抗生素的药动学和药物相互作用中的最新研究进展,为临床合理用药提供参考。  相似文献   

7.
孙冬黎  蒋惠娣  曾苏 《中国药学》2012,21(6):544-552
膜转运体介导了多种药物的摄取和外排过程, 在药物吸收、分布、代谢和排泄 (ADME) 过程中起了重要作用。膜转运体的独特性质使其成为药物研发中的潜在靶标, 合理利用这一靶标可使药物具有理想的药动学特征包括靶向分布,临床疗效改进和不良反应的降低。本文综述了目前主要的摄取和外排转运体包括溶质转运蛋白 (SLC) 超家族和三磷酸腺苷结合盒超家族 (ABC) 的特异性组织分布, 转运功能和底物谱。例举了几个基于转运体的改良药物ADME特性的成功例子。在本文最后探讨了药物设计研发中常用于研究药物和转运体之间相互作用的体内体外的研究方法。  相似文献   

8.
应用药物转运体的药代动力学评价   总被引:1,自引:0,他引:1  
药物转运体在药代动力学方面起到非常重要的作用,它与药物的吸收、分布、排泄、药效发挥、以及药物毒性作用等密切相关。基于转运体的药物间相互作用,还能影响到临床合并治疗药物之间的药代动力学关系。本研究室已经建立了一整套的实用于药代动力学研究和药物间相互作用评价,高效表达人药物转运体蛋白的体外筛选系统,并已将其应用于新药的筛选研究。此方法的特点在于,以表达人药物转运体蛋白的宿主培养细胞为研究对象,在临床前期提供与临床试验相似的研究结果,今后必将成为药物研发领域有用的评价方法。  相似文献   

9.
心血管疾病是人类卫生健康的重要威胁,也是药物研发的重要研究领域。类器官是利用干细胞的自我更新和分化能力,通过体外培养构建的一类与真实器官结构和功能类似的微器官。由于心脏类器官具备人源性、更贴近体内的结构和功能、可实现自组装及遗传稳定性好的特点,其在心脏发生发育研究、心血管疾病模型构建药物研发领域中的应用受到广泛关注。因此,本文将对近年来心脏类器官的发展与构建策略、心脏类器官在药物研发领域中的应用及该技术的前景进行讨论。  相似文献   

10.
药物的副作用是由于药物与不希望的靶标发生了作用,这是由于靶标受体与药物分子的杂泛性所致。药物的杂泛性具有双重性:有利的方面是可用于设计多靶标作用药物;不利方面是其所产生的副作用。然而,药物的副作用也可以作为研发新药的出发点,经结构改造消除或减弱原药的主作用,提升某副作用使其成为新的药物。近年来确定的许多药物靶标,为老药的新用途提供了生物学依据。老药已在临床应用,其物化、药代和安全性应有保障,因而研发的起点高,同时副作用也是根据临床观察所见,故依此研发新药的成功几率较高。在分子变换中,重要之点是结构的新颖性和拥有知识产权。  相似文献   

11.
肾脏转运蛋白对药物在体内排泄和重吸收过程重要作用.本文对肾脏转运蛋白的种类、分布、作用机制及其对药物排泄过程的影响和可能产生的药物相互作用做了综述.  相似文献   

12.
随着人们对于疾病的认识越来越深入,联合用药得到越来越普遍的使用,同时所产生的药物间的相互作用也越来越受到关注。联合用药可能通过影响与药物吸收、分布、代谢、排泄等相关的酶、转运体等,以改变药物的药代属性(生物利用度、分布特性等),调节体内动态药效物质组的构成,改变药物的药效(协同作用、拮抗作用、毒副作用等),从而对药物的有效性、安全性产生影响。从联合用药对药物吸收与代谢的影响这两方面来阐述联合用药的研究近况,为联合用药的基础研究以及临床应用的安全有效提供参考。  相似文献   

13.
14.
目前,临床实践中使用的大多数药物是经口服给药,必须经过充分和持续地吸收才能达到效果。药物吸收在口服药物治疗疾病中起着先决条件,其中药物转运体在药物的肠道吸收中起主要作用。同时药物的联合应用在临床上越来越普遍,通常通过使用多种药物来达到治疗效果,但联合用药大多会产生一定的药物相互作用,从而影响药物的药动学特点。综述肠道转运体介导的几类药物相互作用对其吸收的影响及临床意义,为临床应用提供参考。  相似文献   

15.
目的对肝脏转运蛋白在药物肝胆转运中的作用作一综述,为药物肝靶向提供依据。方法根据文献,从药物不良反应、药物的矢量转运、药物肝靶向性、药物之间相互作用4个方面阐述肝脏转运蛋白对药物肝胆排泄产生的影响。结果肝脏转运蛋白引起的药物矢量转运影响药物的肝脏摄取,药物肝靶向性影响药物的疗效,药物之间相互作用影响临床用药安全和不良反应。结论肝脏转运蛋白在药物肝胆转运中起到了重要的作用,它与药物在体内各组织分布、临床疗效均有密切的联系。  相似文献   

16.
肾脏是人体最重要的排泄器官。肾单元近端小管细胞具有多种药物转运体和代谢酶,在药物及其代谢物处置中发挥关键作用。近端小管细胞中主要转运体包括有机阴离子转运体、有机阳离子转运体、有机阳离子/肉毒碱转运体、多药及毒素外排转运蛋白、P-糖蛋白、乳腺癌耐药蛋白和多药耐药相关蛋白;主要代谢酶包括细胞色素P450酶,UDP-葡萄糖醛酸基转移酶、磺酸基转移酶、谷胱甘肽S-转移酶。肾脏转运体和/或代谢酶介导药物相互作用(DDIs)是临床关注的重要问题。肾脏转运体和代谢酶存在密切协作关系,在肾脏也存在多种相互作用现象(包括转运-转运相互作用,代谢-代谢相互作用和转运-代谢相互作用),其显著影响药物肾脏处置、临床疗效和肾毒性。本文系统阐述了这些相互作用对药物及其代谢物的肾脏排泄、药动学、DDIs和肾毒性的影响。今后需要进一步阐明肾脏转运-代谢相互作用机制,将有助于研究体内药物肾脏处置和DDIs,促进临床合理用药。  相似文献   

17.
创新药物转化研究中ADME的评价   总被引:1,自引:0,他引:1  
Liu Y  Hong L  Yu LS  Jiang HD  Chen JZ  Meng Q  Chen SQ  Zeng S 《药学学报》2011,46(1):19-29
新药研发是一复杂的庞大系统工程, 所涉及的学科门类众多, 研究周期长。而转化研究有助于构建创新药物的基础研究、临床前研究和临床疗效评价直至新药制造和临床应用的系统研发链, 顺畅基础医学和生物学与创新药物研发、临床医学之间的信息和研究关联, 缩短创新药物从实验室到临床应用的研发周期。在新药研发和临床应用过程中, 化合物的体内过程 (吸收、分布、代谢、排泄, ADME) 是其成药性的重要指标。化合物ADME/T性质在创新药物转化研究中发挥重要作用并贯穿研发过程。因此, 在药物设计及新药开发早期就开展药物代谢研究, 有利于提高新药研发的成功率, 降低新药开发的成本, 获得安全、有效的治疗药物。  相似文献   

18.
1.?Pharmacokinetic drug interactions can lead to serious adverse events and the evaluation of a new molecular entity's (NME) drug–drug interaction potential is an integral part of drug development and regulatory review before its market approval. Clinically relevant interactions mediated by transporters are of increasing interest in clinical development and research in this emerging area and it has been revealed that drug transporters can play an important role in modulating drug absorption, distribution, metabolism and elimination.

2.?Acting alone or in concert with drug-metabolizing enzymes transporters can affect the pharmacokinetics and/or pharmacodynamics of a drug. The newly released drug interaction guidance by the US Food and Drug Administration (USFDA) includes new information addressing drug transporter interactions with a primary focus on P-glycoprotein (P-gp, ABCB1).

3.?This paper provides a regulatory viewpoint on transporters and their potential role in drug–drug interactions. It first outlines information that might be needed during drug development and ultimately included in new drug application (NDA) submissions to address potential transporter-mediated drug interactions. Next, it explains criteria that may warrant conduct of in vivo P-gp-mediated drug interaction studies based on in vitro assessment. In addition, it includes a review case that describes the evaluation of data suggesting a P-gp-based induction interaction.  相似文献   

19.
Introduction: Given that membrane efflux transporters can influence a drug’s pharmacokinetics, efficacy and safety, identifying potential substrates and inhibitors of these transporters is a critical element in the drug discovery and development process. Additionally, it is important to predict the inhibition potential of new drugs to avoid clinically significant drug interactions. The goal of preclinical studies is to characterize a new drug as a substrate or inhibitor of efflux transporters.

Areas covered: This article reviews preclinical systems that are routinely utilized to determine whether a new drug is substrate or inhibitor of efflux transporters including in silico models, in vitro membrane and cell assays, and animal models. Also included is an examination of studies comparing in vitro inhibition data to clinical drug interaction outcomes.

Expert opinion: While a number of models are employed to classify a drug as an efflux substrate or inhibitor, there are challenges in predicting clinical drug interactions. Improvements could be made in these predictions through a tier approach to classify new drugs, validation of preclinical assays, and refinement of threshold criteria for clinical interaction studies.  相似文献   


20.
Parasitic protozoa are responsible for a wide spectrum of diseases in humans and domestic animals. The main line of defence available against these organisms is chemotherapy. However, the application of chemotherapeutic drugs has resulted in the development of resistance mechanisms, which limit the number of antiprotozoal drugs that are effective in the treatment and control of parasitic diseases. Knowledge about the resistance mechanisms involved may allow the development of new drugs that minimise or circumvent drug resistance or may identify new targets for drug development. This review focuses on the role of protozoal ATP-binding cassette (ABC) transporters in drug resistance. These membrane proteins mediate the ATP-dependent transport of a wide variety of chemotherapeutic drugs away from their targets inside the parasites. The genome sequence of Plasmodium falciparum and Plasmodium yoelii has recently been completed, and the sequencing of other parasitic genomes are now underway. As a result, many new membrane transporters belonging to the ABC superfamily are being discovered. We review the ABC transporters in major parasitic protozoa, including Plasmodium, Leishmania, Trypanosoma and Entamoeba species. Transporters with an established role in drug resistance have been emphasised, but newly discovered transporters with a significant amino acid sequence identity to established ABC drug transporters have also been included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号