首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium guaiazulene sulfonate (GAS-Na), which has an anti-inflammatory effect, is an unstable compound, which is gradually decomposed in the solid state at room temperature. In fact, when heated (40 degrees C 6% RH), GAS-Na decomposes almost completely within 1 week. It was found that a kneaded mixture of GAS-Na and cornstarch (weight ratio; 1:250) for tableting with water is stable. So, during production, GAS-Na could be stabilized using water. Four kinds of tablet were prepared in different ways: direct tableting, tableting via screw granulation, tableting via fluidized bed granulation, and tableting via twin-screw extrusion. The stability of GAS-Na in these tablets was compared. The tablet prepared using screw granulation, during which 30% water was added to the material, was the most stable. It was, however, shown that reducing the water content to 12.5%, when screw granulation was conducted, made the GAS-Na less stable. Also, when a twin-screw extruder with kneading paddle elements in the screws was used even with lower water content of 12.5%, the stability of GAS-Na improved. In addition, when the kneading paddle elements were detached from the screws and only the feed screw elements were operated, GAS-Na lost its stability. These results show that the kneading paddle elements play a role in uniformly dispersing a small amount of water into the powder and stabilizing GAS-Na. It was found that the water presence was a very important factor with respect to the decomposition of GAS-Na, irrespective of the crystallinity. Furthermore, a twin-screw extruder with kneading paddle elements is useful for uniformly dispersing water to prepare stable formulations of GAS-Na.  相似文献   

2.
The binary system of etoricoxib with beta-cyklodextrin (beta-CD) was prepared by the kneading method. Drug-cyclodextrin interactions in solution were investigated by the phase solubility analysis. Differential scanning calorimetry, infrared spectroscopy, powder X-ray diffractometry and microscopic study were used to characterize the solid state of all binary systems, whereas their dissolution properties were evaluated according to the USP XXIII paddle method. The results indicate partial interaction of the drug with beta-CD in the physical mixture and complete interaction in the kneaded complex. The dissolution of etoricoxib was notably increased as compared to pure drug as well as its physical mixture. The complex showed more than 75% drug released in 30 min.  相似文献   

3.
The objective of this study was to evaluate near infrared (NIR) spectroscopy and imaging as approaches to assess phospholipid compartment within its solid dispersion with cyclosporine A (CyA). By varying dimyristoyl phosphatidylcholine (DMPC) to CyA weight ratio, five batches were prepared by the kneading technique and characterized by DSC and FTIR. A drug/DMPC ratio of 50:1 provided an enhanced dissolution of CyA. FTIR spectra and DSC thermograms revealed a significant interaction between the drug and DMPC which suggested incorporation of CyA within the formed DMPC liposomes. The developed NIR calibration model was able to assess DMPC concentrations within the kneaded products. The calibration and prediction linear plots showed slopes of 0.9711 and 0.9915, offsets of 0.1247 and 0.1080, correlation coefficients of 0.9854 and 0.9889 and root mean square standard errors of 0.43% and 0.42%, respectively. In contrast, NIR spectral imaging was capable of clearly distinguishing the kneaded products, both qualitatively and quantitatively. NIR imaging revealed the poor powder blending efficiency of the method used to prepare physical mixture compared to the efficient distribution of the kneaded products. In conclusion, NIR spectral imaging system provides a rapid approach for acquiring high-resolution spatial and spectral information on solid dispersions.  相似文献   

4.
Ketorolac, is a non-steroidal anti-inflammatory drug, with strong analgesic activity. It is practically insoluble in water and has been implicated in causing gastrointestinal ulceration. This study describes the formulation of solid dispersions of ketorolac using hydroxypropyl beta-cyclodextrin (HPbeta-CyD) and beta-cyclodextin (beta-CyD) as carriers, to improve the aqueous solubility of the drug, thus enhancing its bioavailability. Also, reduction in ulcerogenicity was anticipated. Differential scanning calorimetry and X-ray diffraction studies indicated loss of crystalline nature of the drug, in the dispersions prepared with HPbeta-CyD. NMR studies revealed a strong interaction between drug and HPbeta-CyD. Solid dispersions of drug with beta-CyD retained the crystalline nature of the drug. All the solid dispersions showed a remarkable improvement in the rate and extent of dissolution of ketorolac. The kneaded dispersion with HPbeta-CyD prepared using a 1:1 alcohol-water mixture showed promise in reducing the ulcer-inducing effect of ketorolac in rats. Oral administration of this dispersion was found to inhibit carrageenan-induced paw oedema in rats to a significantly greater extent compared with ketorolac or its trometamol salt. Though beta-CyD as a carrier for ketorolac gave faster release of the poorly soluble drug, HPbeta-CyD proved to be superior to beta-CyD, as a carrier in the kneaded dispersion prepared using 1:1 alcohol-water mixture. These results suggest that solid dispersions of ketorolac with HPbeta-CyD aid in faster dissolution and better bioavailability of the drug. The higher solubility of the drug in the presence of HPbeta-CyD also reduces local gastrointestinal side-effects of the drug.  相似文献   

5.
Binary systems of ketoprofen with native crystalline beta-cyclodextrin and amorphous statistically substituted methyl-beta-cyclodextrin were investigated for both solid phase characterization (Differential Scanning Calorimetry, powder X-ray diffraction, Infrared Spectroscopy, Scanning Electron Microscopy) and dissolution properties (dispersed amount and rotating disc methods). Grinding, kneading, sealed-heating and colyophilization of equimolar combinations of ketoprofen with methyl-beta-cyclodextrin, as well as colyophilization of analogous combinations with beta-cyclodextrin, led to amorphous products. Crystalline drug, instead, was still clearly detectable in coground, kneaded and sealed-heated products with beta-cyclodextrin. Both the preparation method, and even more the nature of the carrier, played an important role in the performance of the system. Colyophilized and sealed-heated products showed the best dissolution properties. However, independently of the preparation technique, all combinations with methyl-beta-cyclodextrin yield better performances than the corresponding ones with the beta-cyclodextrin. Moreover, intrinsic dissolution rate of ketoprofen from simple physical mixture with the beta-cyclodextrin derivative was even five-fold higher than that from the best product with the parent beta-cyclodextrin.Copyright  相似文献   

6.
The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of preparation and significant improvement in dissolution characteristics.  相似文献   

7.
Aim of the present study was to improve the solubility and dissolution rate of poorly water soluble, BCS class-II drug Ketoprofen (KETO) by solid-dispersion approach. Solid dispersions were prepared by using polyvinylpyrrolidone K30 (PVP K30) and d-mannitol in different drugs to carrier ratios. Dispersions with PVP K30 were prepared by kneading and solvent evaporation techniques, whereas solid dispersions containing d-mannitol were prepared by kneading and melting techniques. These formulations were characterized in the liquid state by phase-solubility studies and in the solid state by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The aqueous solubility of KETO was favored by the presence of both carriers. The negative values of Gibbs free energy illustrate the spontaneous transfer from pure water to the aqueous polymer environment. Solid state characterization indicated KETO was present as fine particles in d-mannitol solid dispersions and entrapped in carrier matrix of PVP K30 solid dispersions. In contrast to the very slow dissolution rate of pure KETO, dispersions of drug in carriers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersions prepared with PVP K30 showed the highest improvement in dissolution rate of KETO. Even physical mixtures of KETO prepared with both carriers also showed better dissolution profiles than those of pure KETO.  相似文献   

8.
The ability of amylodextrin (a linear dextrin) to act as a complexing agent or as a carrier for solid dispersion was evaluated. Blends of amylodextrin with diazepam or prednisolone were freeze-dried and kneaded at elevated temperatures, respectively. The products were analyzed by DSC, X-ray diffractometry, and FTIR spectroscopy. Complex formation with amylodextrin by freeze-drying was found not to occur for diazepam but for prednisolone at a molar ratio of 1 to 1. The freeze-dried product of diazepam with amylodextrin proved to be a solid dispersion. Solid dispersions were formed by both wet (with ethanol) and dry kneading at elevated temperatures of low-melting drugs such as lidocain, diazepam, and methyl-PABA with amylodextrin. No solid dispersions were obtained for high-melting drugs such as prednisolone and salicylic acid. The results point to the formation of solid dispersions by a melting mechanism during the process of kneading at elevated temperatures of low-melting drugs with amylodextrin.  相似文献   

9.
目的:研究无定形聚合物聚丙烯酸树脂Ⅱ(Eudragit Ⅱ)制备的穿心莲内酯固体分散体的优良性质,为固体分散体的载体选择提供参考依据。方法:以无定形聚合物Eudragit Ⅱ为载体材料,按穿心莲内酯-载体质量比为1:3,采用喷雾干燥法制备穿心莲内酯固体分散体,并用傅里叶变换红外光谱(FTIR)、热重分析(TG)、X-射线衍射(XRD)、差示扫描量热(DSC)、扫描电镜(SEM)、比表面积、粒径和溶出度测定穿心莲内酯固体分散体的理化性质及溶出行为。结果:FTIR光谱和TG分析说明在穿心莲内酯固体分散体和物理混合物中穿心莲内酯与Eudragit Ⅱ之间都存在分子间相互作用,其中穿心莲固体分散体具有更好的热稳定性;DSC和XRD分析说明无定形载体Eudragit Ⅱ制备的固体分散体中穿心莲内酯主要以无定形形式存在;SEM显示,固体分散体中穿心莲内酯由块状晶体形态变为了不规则的圆形形态;同时与物理混合物相比,穿心莲内酯固体分散体具有更大的比表面积、更大的孔体积和更小的粒径等粉体学性质;溶出实验表明穿心莲内酯固体分散体具有增大溶出的优势,效果明显。结论:以无定形载体Eudragit Ⅱ制备的穿心莲内酯固体分散体具有优良的理化性质,同时比表面积大,孔体积大的特征更有利于水分子的进入,从而有效地增大穿心莲内酯的溶出速率。  相似文献   

10.
The influence of preparation methodology of silymarin solid dispersions using a hydrophilic polymer on the dissolution performance of silymarin was investigated. Silymarin solid dispersions were prepared using HPMC E 15LV by kneading, spray drying and co-precipitation methods and characterized by FTIR, DSC, XRPD and SEM. Dissolution profiles were compared by statistical and model independent methods. The FTIR and DSC studies revealed weak hydrogen bond formation between the drug and polymer, while XRPD and SEM confirmed the amorphous nature of the drug in co-precipitated solid dispersion. Enhanced dissolution compared to pure drug was found in the following order: co-precipitation > spray drying > kneading methodology (p < 0.05). All preparation methods enhanced silymarin dissolution from solid dispersions of different characteristics. The co-precipitation method proved to be best and provided a stable amorphous solid dispersion with 2.5 improved dissolution compared to the pure drug.  相似文献   

11.
Modified gum karaya (MGK), a recently developed excipient was evaluated as carrier for dissolution enhancement of poorly soluble drug, nimodipine (NM). The advantages of MGK over the parent gum karaya (GK) were illustrated by differences in the in vitro dissolution profiles of respective solid mixtures prepared by co-grinding technique. The influence of process variable, such as polysaccharide concentration and method of preparation of solid mixture on dissolution rate was studied. Solubility studies were also performed to explain the differences in dissolution rate. Solid mixtures were characterized by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and scanning electron microscopy (SEM). The dissolution rate of NM was increased as the MGK concentration increased and optimum ratio was found to be 1:9 w/w ratio (NM:MGK). It is found that method of preparation of solid mixtures was significantly effected the dissolution rate of NM from solid mixtures. The order of method of preparation in according to their Dissolution Efficiency is physical mixture < co-grinding mixture < swollen carrier mixture < kneading mixture (water as kneading agent) < kneading mixture (70% v/v ethanol as kneading agent) < solid dispersion. Though, the solid mixtures prepared by other methods like solid dispersion, swollen carrier mixture and kneading technique gave faster release, co-grinding mixture prepared in 1:9 w/w ratio (NM:MGK) was found to exhibit a significant improvement in dissolution rate without requiring addition of organic solvents or high temperatures for its preparation and the process is less cumbersome. Hence, co-grinding technique appears to be more easier and the most convenient method from a practical point of view.  相似文献   

12.
The purpose of the study was to investigate the suitability of polyacrylic acid (PAA) as a carrier in solid dispersions, with the aim to delay crystallization of basic drugs and improve their dissolution behaviour. The physicochemical properties were investigated in order to link the physical state of some model compounds to their dissolution properties. Loperamide and two structurally related substances were selected as model compounds. Solid dispersions were prepared by spray drying. The amount of residual solvents and water was determined with gas chromatography (GCS: S: solvent) and thermogravimetric analysis (TGA). The drug loading of the dispersions was determined using high performance liquid chromatography (HPLC). ADSC (alternating or temperature modulated DSC), XRD and FT-IR-spectroscopy were used to evaluate the physical state and in vitro dissolution tests were performed to measure the dissolution properties. IR-measurements demonstrated the formation of a salt between the COOH-groups of the polymer and the amino-groups of the compounds. This phenomenon results in high Tg-values of the dispersions, suppression of crystallization of the fragment molecules during preparation and an increase of the dissolution rate. Furthermore, the stability study conducted on the dispersions with loperamide showed that both, the amorphous state of the drug and the dissolution behaviour are stable under the applied storage conditions. Hence, from the experimental results it could be concluded that PAA is a suitable carrier in the formulation of stable solid dispersions for the basic compounds that were investigated.  相似文献   

13.
Solid dispersions of celecoxib with beta-cyclodextrins were prepared by physical mixing, slugging and kneading methods at 1:1 and 1:2 molar ratios and characterized by differential scanning calorimetry. Celecoxib suspensions were formulated employing its solid dispersions with sodium carboxymethylcellulose as the suspending agent. Stability studies were conducted by subjecting all the suspensions to freeze-thaw cycling. The suspensions were evaluated for particle size, sedimentation volume, viscosity, redispersibility and dissolution rate initially and after stability testing. Celecoxib suspensions formulated employing its solid dispersions exhibited good physical stability and gave higher dissolution rates than those formulated with celecoxib alone. The suspension prepared from solid dispersions (1:2) by the kneading method gave the highest improvement in dissolution rate and efficiency. Celecoxib in the inclusion complex with beta-cyclodextrin produced suspensions of better physical stability and dissolution rate.  相似文献   

14.
用溶剂法制备紫杉醇-PVP固体分散体,对其溶解度及体外溶出特性进行考察并对物相进行鉴定。采用溶剂法制备紫杉醇-PVP固体分散体,对固体分散体中紫杉醇的溶解度和溶出率进行测定,研究固体分散体的溶出性质。同时,利用差热分析(Differential scanning calorimetry,DSC)、粉末X衍射(X-ray powder diffractometry,PXRD)、扫描电镜(Scanning electron microscopy,SEM)等方法对其进行物相鉴定。采用SRB法对紫杉醇-PVP固体分散体对SKOV-3细胞药效进行测定。紫杉醇-PVP固体分散体中紫杉醇的溶解度和溶出速率相对其原料药和物理混合物均有了明显的提高;热差分析及粉末X衍射结果表明固体分散体中紫杉醇呈非结晶形式;扫描电镜下固体分散体中无紫杉醇晶体。细胞药效结果表明紫杉醇-PVP固体分散体的细胞药效强于紫杉醇纯药。采用溶剂法制备的紫杉醇-PVP固体分散体可显著提高紫杉醇的溶解度和溶出速度。  相似文献   

15.
目的用溶剂法制备槲皮素-PVP固体分散体并考察其溶出特性并对物相进行鉴定。方法采用溶剂法制备槲皮素-PVP固体分散体,通过溶出实验对槲皮素溶出率的测定研究固体分散体的溶出性质,利用差热分析(Differentialscanning calorimetry,DSC)、红外光谱分析(Infrared spectroscopy,IR)、粉末X衍射(X-ray powder diffractometry,PXRD)、扫描电镜(Scanning electron microscopy,SEM)等方法对其进行物相鉴定。结果槲皮素-PVP固体分散体的溶出速率相对其物理混合物有了明显的改善; 溶解实验显示固体分散体中槲皮素的溶解度有了显著的提高;热差分析及粉末X衍射结果表明固体分散体中槲皮素呈非结晶形式;扫描电镜下固体分散体中无槲皮素晶体。结论采用溶剂法制备槲皮素-PVP固体分散体可显著提高槲皮素的溶解度及溶出速度。  相似文献   

16.
The aim of the current research project was to explore the possibilities of combining pressurized carbon dioxide with hot stage extrusion during manufacturing of solid dispersions of itraconazole and polyvinylpyrrolidone-co-vinyl acetate 64 (PVP-VA 64) and to evaluate the ability of the pressurized gas to act as a temporary plasticizer as well as to produce a foamed extrudate. Pressurized carbon dioxide was injected into a Leistritz Micro 18 intermeshing co-rotating twin-screw melt extruder using an ISCO 260D syringe pump. The physicochemical characteristics of the extrudates with and without injection of carbon dioxide were evaluated with reference to the morphology of the solid dispersion and dissolution behaviour and particle properties. Carbon dioxide acted as plasticizer for itraconazole/PVP-VA 64, reducing the processing temperature during the hot stage extrusion process. Amorphous dispersions were obtained and the solid dispersion was not influenced by the carbon dioxide. Release of itraconazole from the solid dispersion could be controlled as a function of processing temperature and pressure. The macroscopic morphology changed to a foam-like structure due to expansion of the carbon dioxide at the extrusion die. This resulted in increased specific surface area, porosity, hygroscopicity and improved milling efficiency.  相似文献   

17.
目的以泊洛沙姆188(F68)为载体制备环孢素(CsA)固体分散体并考察其体外溶出。方法以溶剂一熔融法制备固体分散体,以差示扫描量热法(DSC)和X.射线衍射法鉴定CsA在体系中的存在状态,以FTIR表征药物与载体的相互作用,以摇瓶法测定CsA的溶解度,按《中国药典》溶出度第三法测定CsA从物理混合物和固体分散体中的溶出。结果X-射线衍射图谱显示CsA结晶衍射峰消失,提示药物以无定形或分子状态存在于固体分散体中。FTIR结果表明药物与载体间无相互作用。药物溶解度和溶出度均随着F68比例的增加而增大,固体分散体和物理混合物60min的累积溶出百分率分别为99.32%和75.41%,两者具显著性差异(P〈0.01)。结论F68能提高CsA的溶解度和溶出度,可用来制备CsA的固体剂型。  相似文献   

18.
Solid dispersions and physical mixtures made up of the poorly water-soluble drug UC 781, a polymer and a surfactant were prepared to contribute to the understanding of the relationship between physicochemical characteristics and dissolution behaviour. In addition, to facilitate downstream processing while still favouring drug dissolution to a maximum extent, formulation conditions were investigated to obtain a free flowing powder which contains a maximum amount of surfactant. Poloxamer 407, a polyethylene-polypropylene glycol block copolymer, was selected as a suitable polymer based on UC 781 supersaturation results. d-Alpha-tocopheryl polyethyleneglycol succinate 1000 (TPGS 1000) was preferred as a surfactant since it increased UC 781 dissolution when formulated in a self-micro emulsifying drug delivery system (SMEDDS), as compared to TPGS 400, TPGS 4000 and TPGS 6000. Based on flow properties, a TPGS 1000/Poloxamer 407 ratio of 80/20 was used to prepare solid dispersions by spray drying. Pure drugs, physical mixtures and solid dispersions were characterized by differential scanning calorimetry and X-ray powder diffraction. Eutectic phase behaviour was obtained in which the relative distribution of the polyethylene glycol folding was dependent on UC 781 concentration. Drug release was markedly increased when formulated as a solid dispersion with Poloxamer 407 and TPGS 1000. Formulation of solid dispersions did however not further improve the drug dissolution rate compared to that of physical mixtures. Nonetheless, variability of dissolution results was considerably reduced upon solid dispersion formulation.  相似文献   

19.
This work examines the release of etodolac from various molecular weight fractions of polyethylene glycol (PEG) solid dispersions. Solid dispersions of etodolac were prepared in different molar ratios of drug/carrier by using solvent and melting methods. The release rate of etodolac from the resulting complexes was determined from dissolution studies by use of USP dissolution apparatus 2 (paddle method). The physical state and drug:PEG interaction of solid dispersions and physical mixtures were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR) and differential scanning calorimetry (DSC). The dissolution rate of etodolac is increased in all of the solid dispersion systems compared to that of the pure drug and physical mixtures. The solid dispersion compound prepared in the molar ratio of 1:5 by the solvent method was found to have the fastest dissolution profile. The physical properties did not change after 9 months storage in normal conditions.  相似文献   

20.
The aim of this work was to report the properties of rofecoxib-PEG 4000 solid dispersions and tablets prepared using rofecoxib solid dispersions. Rofecoxib is a poorly water soluble nonsteroidal anti-inflammatory drug with a poor dissolution profile. This work investigated the possibility of developing rofecoxib tablets, allowing fast, reproducible, and complete rofecoxib dissolution, by using rofecoxib solid dispersion in polyethylene glycol (PEG) 4000. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the solid state of solid dispersions. The effect of PEG 4000 concentration on the dissolution rate of rofecoxib from its solid dispersions was investigated. The dissolution rate of rofecoxib from its solid dispersions increased with an increasing amount of PEG 4000. The extent of dissolution rate enhancement was estimated by calculating the mean dissolution time (MDT) values. The MDT of rofecoxib decreased significantly after preparing its solid dispersions with PEG 4000. The FTIR spectroscopic studies showed the stability of rofecoxib and absence of well-defined rofecoxib-PEG 4000 interaction. The DSC and XRD studies indicated the amorphous state of rofecoxib in solid dispersions of rofecoxib with PEG 4000. SEM pictures showed the formation of effective solid dispersions of rofecoxib with PEG 4000 since well-defined change in the surface nature of rofecoxib and solid dispersions were observed. Solid dispersions formulation with highest drug dissolution rate (rofecoxib: PEG 4000 1:10 ratio) was used for the preparation of solid dispersion-based rofecoxib tablets by the direct compression method. Solid dispersion-based rofecoxib tablets obtained by direct compression, with a hardness of 8.1 Kp exhibited rapid drug dissolution and produced quick anti-inflammatory activity when compared to conventional tablets containing pure rofecoxib at the same drug dosage. This indicated that the improved dissolution rate and quick anti-inflammatory activity of rofecoxib can be obtained from its solid dispersion-based oral tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号