首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
目的了解不同类型公共场所室内PM_(2.5)污染情况,探讨室内外PM_(2.5)关系及影响室内PM_(2.5)浓度的因素。方法于2015年7—8月和11—12月以南京市4类32家公共场所[商场(超市)、影院、餐厅、医院]为研究对象,采用重量法同时测定室内外PM_(2.5)浓度,使用温湿度计实时记录室内外温湿度,通过调查问卷收集采样期间室内人员吸烟、门窗开关、新风系统使用等信息,利用多重线性回归分析室内PM_(2.5)浓度的影响因素。结果夏季室内外PM_(2.5)浓度中位数分别为44μg/m~3(范围:13~158μg/m~3)和36μg/m~3(范围:20~71μg/m~3),均显著低于冬季值[117μg/m~3(范围:39~341μg/m~3)和100μg/m~3(范围:53~229μg/m~3)]。在夏季,餐厅的室内PM_(2.5)浓度显著高于影院和商场(超市)(P0.05),全部调查对象室内外PM_(2.5)浓度比值(I/O值)中位数为1.1(范围:0.39~5.12),其中餐厅、商场(超市)、医院和影院I/O值大于1的比例分别为90%(9/10)、40%(4/10)、80%(4/5)和0%(0/5)。但冬季不同类型公共场所室内PM_(2.5)浓度差异无统计学意义(P0.05);全部调查对象I/O值中位数为0.92(范围:0.59~1.89),显著低于夏季(P=0.029),其中餐厅、商场(超市)、医院和影院I/O值大于1的比例分别为60%(6/10)、40%(4/10)、40%(2/5)和0%(0/5)。多重线性回归分析结果显示,影响夏季公共场所室内PM_(2.5)浓度主要因素为室内人员吸烟(β=0.548,P0.001)和新风系统使用(β=-0.513,P0.001),回归方程的决定系数(R~2)为0.420,而影响冬季室内PM_(2.5)浓度的主要因素为室外PM_(2.5)浓度(β=0.984,P0.001)和室内外相对湿度差的绝对值(β=-0.027,P0.001),回归方程的决定系数(R~2)为0.814。结论南京市典型公共场所室内PM_(2.5)污染状况和室内外PM_(2.5)浓度关系均存在季节性差别,室外PM_(2.5)浓度、室内人员吸烟、新风系统使用和通风换气等是影响室内PM_(2.5)浓度重要因素。  相似文献   

2.
目的了解普通居民室内外PM_(2.5)污染情况,探讨室内外PM_(2.5)关系及影响室内PM_(2.5)浓度的因素。方法于2018年9月—2019年1月从济南市历下区甸柳社区选择49户普通居民住宅采用RPPM_(2.5)系统监测3 d室内PM_(2.5)浓度、温度和相对湿度,通过调查问卷收集监测期间室内人员窗户开关、烹饪、空气净化器使用等信息。每次调查的时间间隔为30 d,共开展5次调查。从距离调查点位最近的环保监测站和气象监测站获取同期的室外空气PM_(2.5)浓度以及环境温度、相对湿度,利用混合效应模型分析室内PM_(2.5)浓度的影响因素。结果 2018年9月—2019年1月的5次调查显示室内PM_(2.5)浓度的几何均数分别为64.96、38.29、57.4、50.39和59.60μg/m~3,室外空气PM_(2.5)浓度几何均数分别为40.21、34.65、58.60、67.89和83.14μg/m3,室内外PM_(2.5)浓度呈正相关(rs=0.41,P0.001)。秋季室内外PM_(2.5)浓度比值(I/O)为1.17(P_(25)~P_(75):0.96~1.55),冬季I/O值为0.77(P25~P75:0.54~0.93),秋季I/O值明显高于冬季。混合效应模型分析结果显示,室外空气PM_(2.5)浓度(β=2.84×10~(-3),P0.001)、室内外相对湿度差绝对值(β=-0.02,P0.001)、室外风速(β=-0.87,P0.001)、空气净化器使用(β=-0.14,P=0.04)和室内除尘(β=0.19,P0.001)是影响室内PM_(2.5)水平的重要因素。混合效应模型的边际R~2(R_m~2)为0.55。结论济南市普通居民住宅室内外PM_(2.5)浓度关系在秋季和冬季存在明显的季节性差别,室外空气PM_(2.5)浓度、室内外相对湿度差绝对值、室外风速、空气净化器使用和室内除尘是影响室内PM_(2.5)浓度的重要因素。  相似文献   

3.
为探讨火车站室内环境质量,于2017年2月对长江三角洲地区6个火车站(4个新建火车站、2个旧式火车站)内不同位置PM_(10)及PM_(2.5)浓度进行检测。结果显示,新建火车站室内PM_(10)的浓度范围为98.5~220.4μg/m~3,PM_(2.5)的浓度范围为46.0~84.6μg/m~3;楼梯和电梯附近采样点设有排气扇,大气颗粒物浓度最低;所测6个车站的室内外颗粒物浓度比值(I/O)均小于1。提示新建火车站空气质量优于旧式火车站,通风设备有利于减弱PM_(10)及PM_(2.5)浓度,且室内空气质量优于室外。  相似文献   

4.
目的了解上海市居民住宅室内外PM_(2.5)浓度的长期变化趋势及相关影响因素,为制定和完善室内空气质量标准提供数据支持和科学依据。方法于2015年9月—2016年5月在上海市区某居民住宅连续同步监测室内外PM_(2.5)浓度,每月工作日连续采样4 d,周末连续采样2 d。同期采用磁开关记录仪和室内人员活动模式问卷,记录住户开关窗频率、烹饪、净化设备使用情况等。结果累计采样1 296 h,室内及室外PM_(2.5)浓度的小时均值分别为(47.81±35.38)、(86.85±85.40)μg/m3。室内外PM_(2.5)浓度呈明显正相关(rs=0.859,P0.01),室内外PM_(2.5)浓度比值(I/O比值)平均为0.75±0.37,且冬季和休息时段(0:00—6:00)比值较低。室外PM_(2.5)浓度高、室内烹饪、开窗与室内PM_(2.5)浓度升高有关,室内净化设备的使用可降低室内PM_(2.5)浓度。结论本次监测的居民住宅室内PM_(2.5)浓度与室外浓度相关,I/O比值呈季节性和昼夜变化;关闭门窗时建筑围护结构对室外PM_(2.5)有一定阻隔作用,使用空气净化设备可降低室内PM_(2.5)浓度。  相似文献   

5.
目的探讨居室内PM_(2.5)污染特征及其影响因素。方法于2015年4—5月,选取北京城区和郊区24户住宅,对室内和室外空气中PM_(2.5)进行检测和数据采集,并对居室特征及人员时间活动情况进行问卷调查。结果室内外PM_(2.5)浓度日均值分别为(75.5±59.4)、(68.7±59.0)μg/m~3,二者呈正相关(P0.05)。室内PM_(2.5)浓度与室内外温差、室外风速呈负相关(P0.05),与室外相对湿度呈正相关(P0.05)。不同厨房类型、窗户类型、楼层、朝向的居室PM2.5浓度的室内/室外比值(I/O值)差异有统计学意义(P0.05),开放式厨房、推拉窗、低楼层、东西朝向的居室PM_(2.5)的I/O值更高。静坐、走动、运动、炒(炸)、炖(熬)、手动打扫时段的I/O值均高于睡觉时,差异有统计学意义(P0.05);无人、吸烟、蒸(焖)、机械打扫时段的I/O值与睡觉时段无明显差异(P0.05)。结论检测时间内室内外PM_(2.5)污染严重,室外环境及气象条件、居室特征、室内人员活动均可能影响室内PM2.5浓度。  相似文献   

6.
目的了解中山市室内新装修场所污染状况及颗粒物的来源,为室内空气污染的防控提供依据。方法选择2013—2014年中山市35间室内新装修场所作为研究对象,对其室内外PM_(2.5)和PM_(10)、室内甲醛、苯、甲苯、二甲苯和总挥发性有机化合物(TVOC)进行现场监测,对数据进行统计分析。结果新装修场所室外PM_(2.5)和PM_(10)平均质量浓度均大于室内;室内甲醛质量浓度为(0.103±0.110)mg/m~3,苯(0.013±0.002)mg/m~3,甲苯(0.051±0.126)mg/m~3,二甲苯(0.054±0.142)mg/m~3,TVOC(0.082±0.134)mg/m~3;PM_(2.5)的室内/室外(I/O)平均比值为0.996(0.307~1.769),PM_(10)为0.941(0.355~2.182);室内PM_(2.5)与PM_(10)存在显著正相关关系(r=0.933,P=0.000);室外PM_(2.5)与PM_(10)存在显著正相关关系(r=0.988,P=0.000)。结论中山市室内新装修场所污染严重,室内颗粒物的污染主要来源于室外。  相似文献   

7.
为探讨不同风速条件对室内外PM_(2.5)浓度关系的影响。对某典型无人办公室室内和室外的PM_(2.5)浓度、室外风速和相对湿度(RH)进行了长达1年的连续监测,并在对相对湿度分层的情况下分析风速对室内外PM_(2.5)浓度的影响。结果显示在不同相对湿度范围内,室内和室外PM_(2.5)浓度均具有很强的相关性。RH≤20%时,当风速4 m/s时,风速的增加有助于室外PM_(2.5)浓度的升高;风速≥4 m/s时,有助于降低室外PM_(2.5)浓度。RH 20%~40%时,当风速≥5 m/s时室内外PM_(2.5)浓度得到明显改善。RH40%~60%时,风速1 m/s时,室内外PM_(2.5)浓度均随风速增加而降低。RH60%~80%时,室内外PM_(2.5)浓度均随风速增加而降低。RH≥80%时,风速3 m/s时,室内外PM_(2.5)浓度明显降低且均随风速增加而降低。而未对相对湿度分层的条件下,风速1 m/s时,室内外PM_(2.5)浓度均随风速增加而降低。当RH≤20%时,I/O比随风速先降低而后略微升高,而其他相对湿度条件下的I/O比显示出随风速增加而降低的趋势。提示风速是影响室内外PM_(2.5)浓度关系的重要因素,但不同相对湿度条件下,其影响结果不同。  相似文献   

8.
为了解空气净化器对超声洁牙诊室内颗粒物的净化效果,探讨室内气温和相对湿度对净化器净化效果的影响,于2016年11—12月选择深圳市某超声洁牙诊室为研究对象,采用便携式气溶胶监测仪和粒子计数器监测诊室内颗粒物质量浓度和粒子数浓度,对比使用和未使用净化器两种情况下诊室内PM2.5质量浓度和粒径为0.3~0.5μm(PM0.3~0.5)、0.5~5.0μm(PM0.5~5.0)、≥5.0μm(PM≥5.0)的粒子数浓度,计算动态污染环境下的净化器净化效率,并同步监测室内气温和相对湿度,分析气温和相对湿度对净化器净化效率的影响。结果显示,净化器对诊室内PM2.5的净化效率为42.3%,并可缩小PM2.5浓度波动范围;开启净化器后,室内PM2.5浓度逐渐降低并趋于稳定;净化器关闭后,PM2.5浓度大幅升高。在未使用净化器时,PM0.3~0.5、PM0.5~5.0、PM≥5.0的粒子数浓度分别为5.3×107、18.7×106、34.1×103个/m3,净化器对其净化效率分别为17.4%,51.7%和51.7%。诊室内气温和相对湿度的变化可影响净化器对颗粒物的净化效率,净化器对不同粒径粒子净化效率最高时所对应的室内气温和相对湿度不同。提示超声洁牙诊室内颗粒物污染严重,引入空气净化器有助于降低室内颗粒物污染,室内气温和相对湿度需根据空气净化器净化效率进行调节,以达到最大净化效果。  相似文献   

9.
目的了解星级宾馆室内颗粒物污染水平,分析室内颗粒物浓度的影响因素。方法选择北京市西城区四、五星级宾馆共6家,于2014年春、夏、秋、冬季分别进行1次采样,监测室内外空气PM_(10)、PM_(2.5)浓度。结果调查的星级宾馆客房室内空气PM_(10)、PM_(2.5)平均浓度均低于标准限值。室外大气颗粒物浓度高于室内,PM_(2.5)在PM_(10)中所占比例低于室内,差异有统计学意义(P0.05)。不同楼层客房的空气颗粒物浓度差异无统计学意义(P0.05)。不同季节客房的室内PM_(10)、PM_(2.5)浓度不同,秋季污染物浓度较高;开窗后客房室内颗粒物浓度高于开窗前,差异均有统计学意义(P0.05)。结论本次调查的宾馆室内颗粒物浓度与楼层无关,秋季污染物浓度高于其他季节。在室内无污染源的情况下,室内颗粒物污染主要来源于室外。  相似文献   

10.
目的研究自然通风条件下大规模人群的住宅内PM_(2.5)浓度水平,探讨PM_(2.5)浓度的室内外关系,为评估室内PM_(2.5)暴露提供重要数据支撑和新的研究思路。方法于2013年12月1日—2014年2月28日(2013—2014冬季)在北京市某区开展大规模人群的时间-活动模式和空气污染暴露影响因素调查,基于调查数据及PM_(2.5)空气动力学特性建立住宅内PM_(2.5)的质量平衡模型,利用环境监测站点PM_(2.5)监测数据模拟住宅内PM_(2.5)浓度,计算室内外PM_(2.5)浓度比(I/O),并探讨PM_(2.5)室内外关系。结果本研究1 092个样本2013—2014冬季住宅内PM_(2.5)浓度范围为26~167μg/m~3,PM_(2.5)浓度的中位数为73μg/m~3,四分位数间距为34μg/m~3。室外PM_(2.5)浓度范围分别为0~33μg/m~3、34~65μg/m~3、66~129μg/m~3、≥130μg/m~3时,PM_(2.5)浓度I/O分别为1.75、1.05、0.76和0.63;随着室外PM_(2.5)浓度的增加,I/O呈减小趋势,且分布趋于集中。结论基于大规模人群的时间-活动模式和空气污染暴露影响因素调查建立质量平衡模型,可实现大规模人群室内PM_(2.5)浓度的连续模拟。  相似文献   

11.
为评价超声洁牙诊室内PM_(2.5)污染水平,于2016年11—12月采用便携式气溶胶监测仪测定深圳市某超声洁牙诊室内PM_(2.5)浓度,用PM_(2.5)的室内和室外浓度比值(I/O)分析室内PM_(2.5)的主要来源。结果显示,诊室内PM_(2.5)日均浓度和小时浓度均有超标(75μg/m~3),PM_(2.5)的I/O比值均大于1。提示超声洁牙诊室内PM_(2.5)的浓度较高,且主要来源为室内源。  相似文献   

12.
目的通过采集室内外PM_(10)和PM_(2.5),对其中内毒素含量进行初步研究。方法于2018年1月选择良好天气和重度污染天气各1 d,对苏州市某高校实验室和某家庭居室分别设立室内和室外采样点各3个,采集空气PM_(10)和PM_(2.5),检测其中内毒素含量。结果室外PM_(2.5)、PM_(10)中的内毒素含量分别为(0.033 4±0.013 4)、(0.056 4±0.019 8)EU/m~3,室内分别为(0.027 1±0.011 6)、(0.041 0±0.005 9)EU/m~3,室外空气颗粒物中内毒素含量均高于室内,但差异无统计学意义(P0.05)。PM_(10)中内毒素含量[(0.048 7±0.015 9)EU/m~3]高于PM_(2.5)[(0.030 3±0.012 1)EU/m~3],差异有统计学意义(P0.05)。结论本次调查的苏州市室内外空气颗粒物中存在一定的内毒素污染。  相似文献   

13.
目的监测福建省4类公共场所空气颗粒物(PM_(10)、PM_(2.5))室内外浓度,了解从业人员健康状况,探讨颗粒物对人群的健康影响。方法采用横断面调查法,对福建省4个设区市的168家公共场所(含宾馆/酒店、理发店、美发店及候车室4类场所)的环境进行现场检测,调查从业人员1 651人,计算症状/体征自报率并分析影响因素。结果从业人员眼睛、呼吸系统及皮肤的症状/体征自报率分别为40.4%(667人)、42.1%(695人)及24.7%(408人);现场环境检测中,PM_(10)、PM_(2.5)室内浓度中位数分别为67μg/m~3、36μg/m~3,室外分别为70μg/m~3、38μg/m~3,浓度差中位数分别为0(23~521)μg/m~3、-1(11~236)μg/m~3,PM_(10)浓度室内大于室外,PM_(2.5)室外大于室内(Zc=4.68、3.40,P均0.01);从业人员健康影响因素logistic回归分析显示,男性、工龄5~9年及文化程度小学危险度相对较低;饮酒及高PM_(10)、PM_(2.5)浓度是健康的危险因素。结论颗粒物对人体健康影响的非特异性,可能导致环境污染物对人群健康的影响被低估,应加强公共场所环境管理,以保护从业人员健康。  相似文献   

14.
为探讨开关窗通风对宿舍室内PM_(2.5)浓度的影响。于2015年11—12月选取某高校31个有代表性的学生宿舍,使用颗粒物检测仪进行PM_(2.5)浓度的检测。观察关窗密闭、开窗通风和通风后密闭对宿舍室内PM_(2.5)浓度的影响。结果显示通风前密闭状态下PM_(2.5)平均浓度为176.28μg/m~3,通风状态下为183.72μg/m~3,通风后密闭状态下为176.28μg/m~3,室外为187.00μg/m~3。通风状态和通风前后密闭状态的宿舍室内PM_(2.5)浓度差异有统计学意义(P0.05);无论通风与否,室内外PM_(2.5)浓度具有高度相关性(rs0.854 8,P0.000 1)。提示室外PM_(2.5)直接影响宿舍室内PM_(2.5)的浓度,关窗并不能有效降低室内PM_(2.5)的浓度,开窗后密闭可降低通风后室内PM_(2.5)的浓度。  相似文献   

15.
目的监测居室环境PM_(2.5)浓度,探索相关因素对居室环境PM_(2.5)浓度的影响。方法 2014年3月至2016年6月,采用Dylos1700型空气质量监测仪(Dylos)对杭州市主城区某住宅小区某居室内空气环境PM_(2.5)浓度进行监测。结果居室内外环境空气PM_(2.5)平均浓度差异有统计学意义(P=0.000),但无相关性(r=0.190,P0.05);家庭烹饪活动影响室内PM_(2.5)浓度,二者之间有相关性(r=0.710,P0.01);吸烟、喷洒杀虫气雾剂会使室内空气PM_(2.5)浓度快速增高,约1h后浓度回落到本底水平;空气净化器使用能有效降低室内PM_(2.5)浓度并保持在较低水平。结论居室内外环境PM_(2.5)浓度之间无相关性,家庭烹饪活动、吸烟、家用化学品使用会增加室内空气PM_(2.5)浓度,空气净化器可有效降低室内空气PM_(2.5)浓度。  相似文献   

16.
目的定量分析典型居民住宅室内、室外来源PM_(2.5)对室内PM_(2.5)污染的贡献,探讨影响室内来源主要因素。方法以北京市55户不同类型居民住宅为调查对象,分别在采暖季(45户)和非采暖季(43户)开展连续7 d的室内外PM_(2.5)同期监测,分别采用重量法和X射线荧光光谱法(ED-XRF)分析PM_(2.5)质量浓度及PM_(2.5)中硫元素含量;利用硫元素比值法估算住宅PM_(2.5)室内外渗透系数,并根据质量平衡方程计算室内外来源的PM_(2.5)对室内浓度的贡献;利用问卷调查收集住宅一般状况和居民室内活动状况信息,并采用多重线性回归模型探讨影响室内来源PM_(2.5)浓度因素。结果非采暖季和采暖季室内PM_(2.5)中来源于室外的比例分别为(81±21)%(M=83%)和(75±24)%(M=77%),差异无统计学意义(P0.05);非采暖季来源于室内源的PM_(2.5)浓度[(12.8±16.4)μg/m~3,M=8.4μg/m~3)]低于采暖季[(22.2±32.9)μg/m~3,M=10.4μg/m~3],差异无统计学意义(P0.05);多重线性回归分析结果表明,非采暖季室内吸烟(β=0.199)和开窗时间(β=-0.073)是造成调查对象室内来源PM_(2.5)浓度差别的重要因素,可以解释总变异的27%,而在采暖季仅发现室内吸烟(β=0.280)可以造成室内来源PM_(2.5)浓度差别,可以解释总变异的25%。结论室外空气是室内PM_(2.5)污染的主要来源;减少室内吸烟和开窗通风可以有效降低对人群对室内来源PM_(2.5)的暴露。  相似文献   

17.
目的了解我国多地区室内外PM_(2.5)浓度水平,分析室内外PM_(2.5)浓度差异的来源,为研究我国居民PM_(2.5)暴露的健康影响提供数据支撑。方法在成都、常州、济南、石家庄、以及哈尔滨5个地区各招募20个调查家庭进行室内PM_(2.5)浓度监测,收集同期距离调查家庭地址最近的室外环境监测站点PM_(2.5)浓度,通过问卷调查记录室内PM_(2.5)污染源及去除途径的相关影响因素,通过多重线性回归分析定量评估室内外PM_(2.5)浓度差异及其影响因素,并对模型进行敏感性分析。结果室外PM_(2.5)浓度对室内PM_(2.5)浓度偏回归系数为0.96(P0.01);空气净化装置运行时长对室内PM_(2.5)浓度降低具有贡献,烹饪对室内PM_(2.5)浓度的贡献无统计学意义(P0.05)。吸烟对于室内PM_(2.5)浓度具有显著正贡献,偏回归系数为0.28(P0.01)。结论室外PM_(2.5)是室内PM_(2.5)的重要来源,室内吸烟对于室内PM_(2.5)浓度具有显著贡献,其强度高于烹饪等室内PM_(2.5)污染源。  相似文献   

18.
目的探讨室内大气颗粒物对儿童哮喘的影响。方法于2012—2013年采用病例-对照研究方法,对武汉市82名儿童居室内环境污染情况等进行问卷调查,对室内颗粒物浓度进行检测。结果病例组儿童室内PM_(10)平均浓度高于对照组(P0.05)。将两种颗粒物质量浓度划分为0μg/m~3~、100μg/m~3~、150μg/m~3~、200μg/m~3~不同等级,以0μg/m~3~为参照组,随着污染物浓度的升高,儿童哮喘发生的OR值逐渐升高;在调整混杂因素后,其OR值仍呈增加趋势,尤其是PM_(10)浓度在200μg/m~3以上时,调整后OR值为27.05(95%CI:1.52~482.94)。结论室内PM_(2.5)和PM_(10)对儿童哮喘有影响,且存在剂量-反应关系。  相似文献   

19.
[目的]探讨北京市大气颗粒物PM_(10)和PM_(2.5)对人肺成纤维细胞(HLF)间隙连接通讯(GJIC)及间隙连接蛋白(Cx43)的影响。[方法]颗粒物样品采自北京市城区采暖期,实验细胞为HLF。采用划痕染料标记示踪法(SLDT)测定HLF的GJIC的水平;蛋白免疫印迹(weslen bloting)法观察HLF细胞膜上Cx43的表达。[结果]细胞划痕实验结果显示,PM_(10)和PM_(2.5)均可抑制细胞间荧光扩散,抑制作用随剂量增高而增强;蛋白免疫印迹结果显示,PM_(10)和PM_(2.5)可使细胞膜Cx43表达减少,减少量随浓度的增高而增加。[结论]北京市大气颗粒物PM_(10)和PM_(2.5)能抑制HLF的GJIC,抑制的机制可能与Cx43表达抑制有关。  相似文献   

20.
目的 设计并制作一款由高效空气过滤器(HEPA)膜-MnO2颗粒联用的腔镜手术烟雾气体净化器,通过模拟腔镜手术实验探究该净化器的烟雾净化效果。方法 2022年3—10月医院搭建模拟腔镜手术系统,以模拟手术中不过滤烟雾气体的实验为对照组,以水过滤、HEPA膜过滤、自制HEPA膜-MnO2颗粒联用的腔镜手术气体净化器净化烟雾的实验为实验组,比较两组模拟腔镜手术烟雾中有害物质浓度随时间的变化。结果 对照组烟雾中PM2.5浓度>999μg/m3、总有机挥发物(TVOC)最高浓度为14.26 mg/m3、甲醛浓度达1.53 mg/m3,实验室内嗅觉感受呈极严重状态;实验组中,水过滤、HEPA膜过滤等处理方式无法对腔镜手术烟雾进行有效的处理,经自制HEPA膜-Mn O2颗粒联用的腔镜手术气体净化器在模拟极端手术条件下过滤后排放气体的20 min内,PM2.5、TVOC及甲醛浓度均明显低于对照组,分别维持在10μg...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号