首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
基础医学   2篇
皮肤病学   1篇
外科学   9篇
综合类   9篇
药学   2篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   4篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2004年   8篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
目的:明确耳颞部颞浅动脉系统与额部及眼眶区周围血管系统之间的交通吻合情况,为临床跨血管区反流耳颞部岛状皮瓣的应用提供解剖学基础.方法:15具福尔马林保存的成人尸体头面部进行肉眼解剖;5具新鲜成人头部标本制作血管铸型,观察颞浅动脉额支与眶上及滑车上动脉的相互交通吻合状况以及颞浅动脉分支与眼轮匝肌营养血管之间的吻合情况.结果:眶上及滑车上动脉和颞浅动脉额支走行基本恒定,且三者存在众多吻合,吻合支集中区域为上界距眶上缘(4.9±0.4)cm,下界为眶上缘水平,上界内侧距离前正中线(1.0±0.2)cm,外侧距离前正中线(4.5±0.4)cm;下界内侧距离前正中线(1.4±0.2)cm,外侧(2.3±0.5)cm;颞浅动脉分支—颧眶动脉以3种分支类型与面动脉的终末支—内眦动脉在眼轮匝肌内形成稳定的交通吻合.结论:颞浅动脉额支与滑车上动脉存在吻合支集中区域;眶上动脉与颞浅动脉额支在眉外侧存在位置恒定吻合点.以眼轮匝肌为蒂的颞区皮瓣实际上是以颧眶动脉远端和眼睑动脉弓为蒂的跨区反流轴型皮瓣.  相似文献   
2.
软骨细胞上清液诱导BMSC向软骨细胞转化的实验研究   总被引:3,自引:0,他引:3  
目的:体外定向诱导大鼠骨髓基质干细胞(BMSC)向软骨细胞表型转化,并对诱导进行鉴定。方法:从SD大鼠中分别分离出BMSC和软骨细胞进行体外培养。收集软骨细胞培养上清液,作为BMSC诱导液从第2代开始进行诱导分化。7d后取出标本,甲苯胺蓝染色和Masson染色检测软骨基质的分泌,免疫组织化学检测软骨特异性Ⅱ型胶原表达,RT-PCR检测Ⅱ型胶原和aggrecan的mRNA表达。结果:镜下见细胞形态由梭形向多边多角形转化。甲苯胺蓝染色和Mas-son染色阳性,Ⅱ型胶原免疫组化检测阳性,RT-PCR检测Ⅱ型胶原和aggrecan mRNA呈阳性表达。结论:软骨细胞上清液可诱导BMSC向软骨细胞转化。  相似文献   
3.
软骨细胞与骨髓基质细胞共培养体外构建软骨的初步研究   总被引:7,自引:0,他引:7  
目的 探讨不同浓度软骨细胞提供的软骨微环境诱导骨髓基质干细胞(BMSC)体外构建软骨的可行性。方法 将体外分别培养扩增的猪BMSC与耳软骨细胞按不同比例混合(9:1,8:2),均以5.0×107/mL的细胞终浓度接种于聚羟基乙酸/聚乳酸(PGA/PLA)支架作为共培养组,以相同终浓度的单纯软骨细胞和单纯BMSC分别接种作为阳性及阴性对照,以20%上述浓度的单纯软骨细胞接种作为低软骨细胞浓度对照。各标本于体外培养4周时取材,通过大体观察、组织学以及免疫组化等方法对新生软骨进行初步评价。结果 各组细胞均与材料粘附良好。8:2共培养组及阳性对照组在体外培养4周时,外观已类似软骨组织并基本保持了材料的大小和形状,组织学显示有较连续的成熟软骨形成,免疫组化也均显示有大量Ⅱ型胶原分泌。9:1共培养组在培养过程中稍有缩小和变形,组织学上仅在培养物的边缘可见到连续的软骨样组织。阴性对照组明显皱缩变形,组织学未见成熟软骨陷窝。低软骨细胞浓度组复合物明显变薄,只在局部形成了不连续的软骨组织,新生软骨量明显少于共培养各组及阳性对照组。结论软骨细胞能够提供软骨微环境诱导BMSC成软骨分化并形成软骨,20%浓度的软骨细胞已能够达到良好的诱导效果。  相似文献   
4.
目的探讨唇裂术后继发鼻部及口唇畸形的整复方法。方法对362例单侧唇裂术后继发鼻部及口唇畸形患者,根据畸形的部位和程度采用不同的修复方法。结果362例患者中,除去6例唇部感染切口裂开,2例鼻假体张力过大取出,3例唇红切迹纠正不明显而再次修复外,351例手术取得良好效果,外形均得到明显改善。结论唇裂术后继发鼻部和口唇畸形表现复杂,修复方法没有固定术式,选择何种修复方法要依具体情况而定。但在术式的选择上应以简单易行、操作简便、创伤小、术后改善明显的术式为基本原则。  相似文献   
5.
Objective To investigate the feasibility of chondrogenesis in vitro with bone marrow stromal cells (BMSCs) induced by the co-cultured chondrocytes. Methods The BMSCs and chondrocytes were separated from pig and cultured. The supernatant of chondrocytes was used as the inducing solution for BMSCs from the 2nd generation. 7 days later, samples were taken and underwent immunohistochemistry and RT-PCR for detection of the expression of specific type Ⅱ cartilage collagen,type Ⅱ collagen and aggrecan mRNA. The cultured BMSCs and chondrocytes were mixed at a ratio of 8:2(BMSC: cartilage cell) and were inoculated into a polyglycolic acid/polylactic acid (PGA/PLA) scaffold at the final concentration of 5.0 × 107/ml. The cartilage cells and BMSCs were also inoculated seperately at the same concentration as the positive and negative control. Pure cartilage cells at 20% of the abovementioned concentration (1.0 × 107/ml) were used as the low concentration cartilage cell control group. Samples were collected 8 weeks later. General observations, wet weight, glycosaminoglycans (GAGs) determination and histological and immunohistochemistry examinations were performed. Results The expression of type Ⅱ collagen, type Ⅱ collagen and aggrecan mRNA were positive in induced BMSCs.In the co-cultured group and the positive control group, pure mature cartilage was formed after 8 weeks of culture in vitro, and the size and shape of the scaffold were maintained. The newly formed cartilage in the two groups were almost the same in appearance and histological properties. The immunohistochemistry results indicated that the cartilage cells of the two groups all expressed ample cartilage-specific type Ⅱ collagen. The average wet weight and GAG content in the co-cultured group reached more than 70% of those in positive control group. Only an extremely small amount of immature cartilage tissues was formed in local regions in pure BMSC group, and the scaffold was obviously shrunk and deformed. Although the wet weight of newly generated cartilage tissue in the low concentration cartilage cell group reached 30% of that in positive control group, the scaffold was obviously shrunken and deformed. Only regional and discontinuous cartilage tissues were formed, and the amount of newly formed cartilage was obviously less than that in the co-culture group and the positive control group. Conclusions Chondrocytes can provide a micro-environment for the formation of cartilage, and also effectively induce BMSC to differentiate into chondrocytes and form tissue-engineered cartilage in vitro.  相似文献   
6.
骨形态发生蛋白2/7(BMP2/7)异源二聚体,较其同源二聚体具有更强的诱导成骨潜能,是目前组织工程骨研究的重要分支之一。本文介绍了异源二聚体BMP2/7诱导成骨的相关实验,比较其与同源二聚体生物活性的差异,并对相关机制进行综述。  相似文献   
7.
软骨细胞诱导骨髓基质细胞构建软骨的体内外比较   总被引:1,自引:0,他引:1  
目的 应用软骨细胞诱导骨髓基质细胞(Bone Marrow Stromal Cells,BMSCs)体外构建软骨,比较其体内植入前后软骨相关生物学特性的差异,探讨共培养构建软骨临床应用的可行性.方法 体外分别培养扩增猪关节软骨细胞和BMSCs,两者按2:8比例混合(软骨细胞:BMSC),以5.0×107/ml的细胞终浓度接种于聚乳酸包埋的聚羟基乙酸支架,体外培养8周后部分标本植入裸鼠皮下,再经体内8周后取材.通过大体观察、糖胺聚糖含量(GAG)测定、生物力学测试、组织学,以及免疫组化等方法对体内植入前后标本的软骨相关生物学特性进行比较.结果 体外培养8周时,所有标本均形成了软骨样组织,但质地较软,组织结构相对较为松散.体内植入8周后,共培养构建软骨能维持良好的软骨外观,而且GAG含量及弹性模量均明显高于体外标本(p<0.01),组织学及免疫组化显示体内标本的组织结构致密,基质及Ⅱ型胶原显色程度均明显强于体外标本.结论 软骨细胞诱导BMSCs构建的软骨在体内皮下环境中能维持良好的软骨特性,而且植入体内后能继续向成熟软骨发育.  相似文献   
8.
目的:探讨软骨细胞在裸鼠体内促进骨髓基质细胞(BMSCs)向软骨分化并形成软骨组织的可行性。方法:从SD大鼠中分别分离出BMSC和软骨细胞进行体外培养。收集软骨细胞培养上清液,作为BMSCs诱导液从第2代开始进行诱导分化,7天后取出标本,免疫组织化学检测软骨特异性Ⅱ型胶原表达,RT-PCR检测Ⅱ型胶原和aggrecan的mRNA表达。SD大鼠BMSCs与软骨细胞按一定比例(7:3)混匀,取5.0×107个混合细胞/ml的各组细胞悬液接种至壳聚糖生物材料,体外培养一周后植入裸鼠皮下,相同数量的单纯软骨细胞或BMSCs同样方法植入,分别作为阳性对照及阴性对照,1.5×107个软骨细胞同样植入作为低浓度软骨细胞对照。各组均8周后取材检测。结果:经诱导后的大鼠BMSCs的Ⅱ型胶原免疫组化检测阳性,RT-PCR检测Ⅱ型胶原和aggrecanmRNA呈阳性表达;混合细胞组及阳性对照组均形成了成熟的软骨,组织学可见成熟软骨陷窝、异染基质及Ⅱ型胶原表达;BMSCs组仅形成了纤维性组织;低浓度软骨细胞组在局部形成了少量软骨。结论:软骨细胞能在一定程度上提供软骨形成的微环境,诱导BMSCs在裸鼠体内向软骨组织分化并形成软骨组织。 还原  相似文献   
9.
Objective To investigate the feasibility of chondrogenesis in vitro with bone marrow stromal cells (BMSCs) induced by the co-cultured chondrocytes. Methods The BMSCs and chondrocytes were separated from pig and cultured. The supernatant of chondrocytes was used as the inducing solution for BMSCs from the 2nd generation. 7 days later, samples were taken and underwent immunohistochemistry and RT-PCR for detection of the expression of specific type Ⅱ cartilage collagen,type Ⅱ collagen and aggrecan mRNA. The cultured BMSCs and chondrocytes were mixed at a ratio of 8:2(BMSC: cartilage cell) and were inoculated into a polyglycolic acid/polylactic acid (PGA/PLA) scaffold at the final concentration of 5.0 × 107/ml. The cartilage cells and BMSCs were also inoculated seperately at the same concentration as the positive and negative control. Pure cartilage cells at 20% of the abovementioned concentration (1.0 × 107/ml) were used as the low concentration cartilage cell control group. Samples were collected 8 weeks later. General observations, wet weight, glycosaminoglycans (GAGs) determination and histological and immunohistochemistry examinations were performed. Results The expression of type Ⅱ collagen, type Ⅱ collagen and aggrecan mRNA were positive in induced BMSCs.In the co-cultured group and the positive control group, pure mature cartilage was formed after 8 weeks of culture in vitro, and the size and shape of the scaffold were maintained. The newly formed cartilage in the two groups were almost the same in appearance and histological properties. The immunohistochemistry results indicated that the cartilage cells of the two groups all expressed ample cartilage-specific type Ⅱ collagen. The average wet weight and GAG content in the co-cultured group reached more than 70% of those in positive control group. Only an extremely small amount of immature cartilage tissues was formed in local regions in pure BMSC group, and the scaffold was obviously shrunk and deformed. Although the wet weight of newly generated cartilage tissue in the low concentration cartilage cell group reached 30% of that in positive control group, the scaffold was obviously shrunken and deformed. Only regional and discontinuous cartilage tissues were formed, and the amount of newly formed cartilage was obviously less than that in the co-culture group and the positive control group. Conclusions Chondrocytes can provide a micro-environment for the formation of cartilage, and also effectively induce BMSC to differentiate into chondrocytes and form tissue-engineered cartilage in vitro.  相似文献   
10.
软骨细胞诱导骨髓基质细胞体内软骨形成   总被引:9,自引:0,他引:9  
目的探讨软骨细胞在体内非软骨形成部位促进骨髓基质细胞(BMSCs)向软骨分化并形成软骨的可行性。方法猪BMSCs与软骨细胞按一定比例(6∶4或7∶3)混匀,取2.5×107个混合细胞悬浮于0.5ml30%Pluronic溶液后注射到裸鼠皮下(n=6)。相同数量的单纯软骨细胞或BMSCs同样方法注射,分别作为阳性对照及阴性对照,0.75×107个软骨细胞同样注射作为低浓度软骨细胞对照。各组均8周后取材检测。结果混合细胞组及阳性对照组均形成了成熟的软骨。组织学可见成熟软骨陷窝、异染基质及Ⅱ型胶原表达。两组新生软骨糖胺多糖(GAG)含量差异无统计学意义(P>0.05),两混合组平均湿重分别为(320±48)mg和(294±37)mg,均达到阳性对照组70%以上。BMSCs组仅形成了纤维性组织,低浓度软骨细胞组在局部形成了少量软骨,但新生软骨平均湿重低于阳性对照的30%。结论上述结果提示软骨细胞能诱导BMSCs在体内非软骨形成部位向软骨分化并形成软骨组织。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号