首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We investigated the effect of moderate post-ischemic hypothermia on neuropathological outcome and cerebral high energy phosphate metabolism, intracellular pH and Mg2+ concentration in the rat. Three groups of animals were investigated: (1) Wistar rats subjected to 12 min of forebrain ischemia under normothermic conditions (n = 17), (2) rats subjected to the identical procedure of ischemia, except that 30 degrees C hypothermia was induced post-ischemia and maintained for 2 h of reperfusion (n = 6), and (3) control hypothermic rats not subjected to ischemia (n = 4). In vivo 31P NMR spectroscopy was performed prior to ischemia, and at intervals up to 168 h after ischemia. Histological analysis of brain tissues was performed 7 days after ischemia. No significant differences in cortical and hippocampal neuronal damage was detected between the two experimental groups. Significantly lower pH values were detected in the hypothermic ischemic animals at 24 h (P = 0.0001) and 48 h (P = 0.018) post-ischemia compared to the normothermic ischemic animals. Normothermic ischemic animals exhibited significantly lower [Mg2+] at 72 h (P less than 0.006) compared to the pre-ischemia level. Our data indicate that post-ischemic hypothermia modifies the profiles of post-ischemic brain tissue pH and Mg2+ concentration, and this modification is not associated with histopathological outcome 7 days after ischemia.  相似文献   

2.
Transient forebrain ischemia was induced in rats whose brain temperature was 31, 33, 35, 38, or 40 degrees C. The development of regional injury was followed using magnetic resonance (MR) imaging, with the ultimate extent of neuronal injury quantified histopathologically. Animals in the hypothermic groups showed minimal changes in MR images over 4 days; normothermic animals showed intensity enhancement attributed to progressive edema developing in the striatum and, later, in the hippocampus. Ischemia at 40 degrees C resulted in widespread edema formation by 1 day post-ischemia; animals in this group did not survive beyond 30 hours. Histopathological analysis at 4 days (1 day for the hyperthermic group) post-ischemia showed that neuronal damage in the normothermic group was confined to the hippocampus and striatum. Minimal damage was found in the hypothermic groups; damage in the hyperthermic group was severe throughout the forebrain. There were no differences in the pre-ischemia 31P MR spectra for the different groups. During ischemia, the increase in intensity of the Pi peak and the fall in tissue pH increased with temperature in the order hypothermic less than normothermic less than hyperthermic group of animals. Post-ischemia energy recovery was similar in all groups, while pH recovered more rapidly in hypothermic animals.  相似文献   

3.
BACKGROUND AND PURPOSE: We examined the influence of concurrent moderate hypothermia (30 degrees C) and transient forebrain ischemia on the induction of 72-kDa heat-shock protein and neuronal damage in male Wistar rats. SUMMARY OF REPORT: Experimental groups included: normothermic with 8 minutes of transient forebrain ischemia (group 1, n = 7), hypothermic without ischemia (group 2, n = 9), and hypothermic (30 degrees C) with 8 minutes of transient forebrain ischemia (group 3, n = 5). Intense 72-kDa heat-shock protein immunoreactivity was demonstrated in rat forebrain 48 hours after induction of normothermic forebrain ischemia (group 1); it was not detected in the brain of animals subjected to hypothermia without ischemia (group 2), and hypothermia during ischemia (group 3) significantly inhibited its expression compared with that in normothermic ischemia animals (group 1). CONCLUSIONS: These observations suggest that 72-kDa heat-shock protein induction is not the mechanism by which moderate hypothermia protects against ischemic cell damage.  相似文献   

4.
亚低温对大鼠短暂全脑缺血后神经元凋亡的影响   总被引:4,自引:1,他引:3  
目的 探讨亚低温对大鼠脑缺血后神经元凋亡的影响,揭示亚低温的部分神经保护机制。方法 采用“双侧颈总动脉阻断+全身低血压”方法来建立大鼠短暂性全脑缺血模型。用神经元尼氏体亚甲兰特殊染色法观察大鼠脑缺血后海马CA1区神经元损害情况;原位细胞凋亡检测法(TUNEL染色)及电镜观察脑缺血后CA1区神经元凋亡情况。结果 与假手术组、低温缺血组相比,常温缺血组海马CA1区神经元缺失明显(P<0.01)。常温及低温缺血组海马CA1区均存在神经元凋亡,但低温缺血组海马CA1区凋亡神经元数明显少于缺血组(P<0.01)。结论 经“双侧颈总动脉阻断+全身低血压”方法建立的大鼠短暂全脑缺血模型证实了亚低温的脑保护作用。全脑缺血后的迟发性神经元死亡很可能经由凋亡途径,而亚低温可通过抑制缺血性神经元凋亡而发挥一定的神经保护作用。  相似文献   

5.
The post-thrombotic brain has recently been reported to have an enhanced vulnerability to a second embolic insult. Although postischemic hypothermia is neuroprotective in global and focal ischemia models, the effect of mild hypothermia on outcome after thromboembolic insults has not been evaluated. This study therefore determined whether brain hypothermia (33°C) was neuroprotective against repeated thromboembolic insults. Photochemically induced non-occlusive common carotid artery thrombosis (CCAT) leading to platelet embolization to the brain was induced in anesthetized rats (n=35). Thirty minutes after CCAT, brain temperature was maintained at normothermic (37°C) or hypothermic (33°C) levels for 4 h followed by a slow rewarming period (1.5 h). Three days later, rats underwent a secondary CCAT insult under normothermic conditions and were allowed to survive for an additional 3 days prior to perfusion fixation and quantitative histopathological assessment. Compared to normothermic animals, mild hypothermia after the first embolic insult produced a significant reduction (P>0.05) in overall infarct volume. Hypothermia reduced total infarct volume from 7.55±2.32 mm3 (mean ± SEM) in normothermic rats to 2.56±0.88 mm3 in hypothermic animals undergoing repeated insults. Histopathological analysis also demonstrated less evidence for focal hemorrhage in the cooled groups. These data demonstrate that mild hypothermia is protective in a thromboembolic stroke model. In addition, post-thrombotic hypothermia decreases the histopathological vulnerability of the post-thrombotic brain to secondary embolic insults. These findings may be important in the prevention of stroke in patients at risk.  相似文献   

6.
Summary During brain ischemia temperature spontaneously declines. In animal experiments this decline is frequently prevented by stabilizing the temperature at the pre-ischemic level, using an external heat source. The present study examines whether this procedure influences the severity of ischemic injury. Wistar rats were submitted to 30-min four-vessel occlusion followed by 7 days recirculation. During ischemia and the 1st h of recirculation various systemic and electrophysiological variables were recorded. Seven days after the ischemia brains were perfusion-fixed for light microscopical examination. Three brain temperature profiles were compared: spontaneous decline of brain temperature during ischemia from 36° to 31°C (spontaneous hypothermia; n=5); constant brain temperature of 30°C induced by selective head cooling (induced hypothermia; n=5); and constant brain temperature of 36°C induced by selective head heating (normothermia; n=5). Core temperature was maintained constant at 37°C in all groups. In spontaneous hypothermia, 19% of CA1 neurons survived after 30-min ischemia. Induced hypothermia significantly increased this percentage to 69% (P<0.05); maintenance of brain temperature at normothermia decreased neuronal survival to 1%. Normothermia also led to morphological injury outside the vulnerable regions, an increase in mortality, marked loss of body weight and a prolongation of the electroencephalographic suppression. These findings demonstrate that stabilizing brain temperature at a constant normothermic level by an external heart source introduces an aggravating pathological element that may interfere in an unpredictable way with the manifestation or treatment of ischemic injury.  相似文献   

7.
Summary The regional distribution of the postsynaptic microtubule-associated protein 2 (MAP2) and the presynaptic marker protein synaptophysin was investigated by immunohistochemistry in brains of rats submitted to 30-min forebrain ischemia by four-vessel occlusion. The following brain temperature profiles during ischemia were compared: (1) constant brain temperature of 36°C (normothermia; n=5); (2) spontaneous temperature decline from 36° to 31°C (spontaneous hypothermia; n=5) and (3) constant temperature of 30°C (induced hypothermia; n=5). Normothermia was produced by exposing the ischemic head to an external heat source, and induced hypothermia by cooling the head with liquid nitrogen vapours. Sham-operated animals were either kept at ambient temperature or exposed to the same heat source, as required for maintaining normothermia during ischemia. Seven days after sham operation or ischemia, brains were fixed by perfusion and processed for immunohistochemistry using monoclonal antibodies against MAP2 and synaptic vesicle-specific protein (synaptophysin). Normothermic ischemia resulted in complete loss of MAP2 immunostaining in the whole hippocampus, spontaneous hypothermic ischemia in complete loss of MAP2 in CA1 sector, and induced hypothermic ischemia only in variable loss of MAP2 in CA1 sector. Post-ischemic immunostaining of synaptophysin revealed a temperature-dependent increase in stratum lacunosum-moleculare of CA1 sector, the density of which correlated inversely with MAP2 staining. Comparison with morphological alterations showed a close relationship between loss of MAP2 staining and histological injury. The post-ischemic activation of synaptophysin may reflect regenerative processes associated with synaptic remodelling and, therefore, is an indirect marker of the severity of ischemic injury.  相似文献   

8.
The effects of hypothermia on production of nitric oxide (NO) in ischemic brain were investigated by using in vivo microdialysis. Male Wistar rats were randomly divided into three groups; saline-treated normothermic group (37°C, n=6), 30 mg/kg N-nitro- -arginine methyl ester( -NAME)-treated normothermic group (n=6), and saline-treated hypothermic group (30°C, n=6). Transient forebrain ischemia was produced by bilateral common carotid artery occlusion combined with hypotension (MABP=50 mmHg). Saline-treated normothermic animals resulted in a reduction of LCBF to 9% of baseline. Saline-treated hypothermic rats revealed the similar changes of LCBF. In contrast, -NAME administration reduced the basal CBF to 85% of saline-treated group and to 8% after ischemia. NO products were decreased during ischemia and transiently increased after reperfusion in saline-treated groups. However, the increase of NO products after reperfusion was less significant in the hypothermia. -NAME-treated group showed a constant reduction of NO production during ischemia and after reperfusion.  相似文献   

9.
The purposes of this study were (1) to document the histopathological consequences of moderate traumatic brain injury (TBI) in anesthetized Sprague-Dawley rats, and (2) to determine whether posttraumatic brain hypothermia (30°C) would protect histopathologically. Twenty-four hours prior to TBI, the fluid percussion interface was positioned over the right cerebral cortex. On the 2nd day, fasted rats were anesthetized with 70% nitrous oxide, 1% halothane, and 30% oxygen. Under controlled physiological conditions and normothermic brain temperature (37.5°C), rats were injured with a fluid percussion pulse ranging from 1.7 to 2.2 atmospheres. In one group, brain temperature was maintained at normothermic levels for 3 h after injury. In a second group, brain temperature was reduced to 30°C at 5 min post-trauma and maintained for 3 h. Three days after TBI, brains were perfusion-fixed for routine histopathological analysis. In the normothermic group, damage at the site of impact was seen in only one of nine rats. In contrast, all normothermic animals displayed necrotic neurons within ipsilateral cortical regions lateral and remote from the impact site. Intracerebral hemorrhagic contusions were present in all rats at the gray-white interface underlying the injured cortical areas. Selective neuronal necrosis was also present within the CA3 and CA4 hippocampal subsectors and thalamus. Post-traumatic brain hypothermia significantly reduced the overall sum of necrotic cortical neurons (519±122 vs 952±130, mean ±SE, P=0.03, Kruskal-Wallis test) as well as contusion volume (0.50±0.14 vs 2.14±0.71 mm3, P=0.004). These data document a consistent pattern of histopathological vulnerability following normothermic TBI and demonstrate hypothermic protection in the post-traumatic setting.Supported by USPHS Grants NS30291 and NS27127  相似文献   

10.
Summary The effects of hypothermia on hypoglycemic brain damage were studied in rats after a 30-min period of hypoglycemic coma, defined as cessation of spontaneous EEG activity. The rats were either normothermic (37°C) or moderately hypothermic (33°C). Morphological brain damage was evaluated after various periods of recovery. Hypothermic animals with halothane anesthesia never resumed spontaneous respiration, thus requiring artificial ventilation during recovery (maximally 8h). In contrast, when isoflurane was used as the anesthetic agent, all animals survived and were examined after 1 week of recovery. There was a tendency towards gradually higher arterial plasma glucose levels during hypoglycemia with lower body temperature. The time period from insulin injection until isoelectric EEG appeared was gradually prolonged by hypothermia, and was shorter when isoflurane was used for anesthesia. Brain damage was examined within the neocortex, caudoputamen and hippocampus (CA1, subiculum and the tip of the dentate gyrus). Damage to neurons was found to be of two types, namely condensed dark purple neurons (pre-acidophilic) and shrunken bright red-staining neurons (acidophilic). In the neocortex, no clear influence of temperature on the degree of injury was seen. In the caudoputamen, the number of injured neurons clearly decreased at lower temperature (33°C,P<0.001) when halothane was used, while no such difference was seen when isoflurane was used as the anesthetic agent. Likewise, a protective effect of hypothermia was seen in subiculum (P<0.01) when halothane, but not isoflurane was used. Damage to CA1 neurons was mild in both groups with halothane, but slightly less frequent (P< 0.05) in the hypothermic group, in which the majority of animals showed no damage. No protection of hypothermia was seen in the animals with isoflurane anesthesia. Furthermore, with isoflurane, more damaged CA1 cells were seen in the normothermic situation as compared to when halothane was used (P<0.01). In contrast, damage to the tip of the dentate gyrus was remarkedely resistant to hypothermia, with the majority of animals showing the same degree of damage as the normothermic ones irrespective of the anesthetic agent used. In summary, hypothermia seemed to have only a partial protective effect on the development of hypoglycemic brain damage, the effects differing between regions previously described to be selectively vulnerable to hypoglycemia, and also differing when halothane or isoflurane were used as anesthetic agents. While long-term survival was achieved with the use of isoflurane, the protective effect of hypothermia seemed to be lost.Supported by the Swedish Medical Research Council (grants no. 14X-263 and 12X-7123), the National Institutes of Health of the United States Public Health Service (grant no. 5 R01 NS-07838) and the Medical Faculty, Lund University  相似文献   

11.
We investigated the effect of moderate whole body hypothermia (30 degrees C) on transient middle cerebral artery occlusion (MCAO) in the rat. Male Wistar rats were subjected to 2 h of ischemia by inserting a suture into the lumen of the internal carotid artery and occluding the origin of the MCA. Experimental groups were (a) MCAO induced at 37 degrees C body temperature (n = 15); (b) 30 degrees C body temperature induced prior to ischemia and maintained for 2 h of MCAO and 1 h of reperfusion (n = 12); and (c) MCAO with regional brain and body temperatures measured in normothermic (n = 3) and hypothermic MCAO rats (n = 2). Histopathological evaluation was performed 96 h after reperfusion. All normothermic MCAO animals exhibited ischemic infarct involving the ipsilateral cortex and basal ganglia with infiltration of neutrophils, macrophages, and microvascular proliferation. Hypothermic MCAO animals exhibited minor ischemic damage ranging from selective neuronal injury to small focal areas of infarct with minimal inflammatory response. Our data demonstrate that transient ischemia induced by using the intra-arterial suture method to occlude the MCA results in a reproducible brain lesion and that moderate hypothermia has a profound protective effect on the brain injury after transient MCAO.  相似文献   

12.
Summary The effects of moderate hypothermia on blood-brain barrier (BBB) permeability and the acute hypertensive response after moderate traumatic brain injury (TBI) in rats were examined. TBI produced increased vascular permeability to endogenous serum albumin (IgG) in normothermic rats (37.5°C) throughout the dorsal cortical gray and white matter as well as in the underlying hippocampi as visualized by immunocytochemical techniques. Vascular permeability was greatly reduced in hypothermic rats cooled to 30°C (brain temperature) prior to injury. In hypothermic rats, albumin immunoreactivity was confined to the gray-white interface between cortex and hippocampi with no involvement of the overlying cortices and greatly reduced involvement of the underlying hippocampi. The acute hypertensive response in normothermic rats peaked at 10 s after TBI (187.3 mm Hg) and returned to baseline within 50 s. In contrast, the peak acute hypertensive response was significantly (P<0.05) reduced in hypothermic rats (154.8 mm Hg, 10 s after TBI) and returned to baseline at 30 s after injury. These results demonstrate that moderate hypothermia greatly reduces endogenous vascular protein-tracer passage into and perhaps through the brain. This reduction may, in part, be related to hypothermia-induced modulation of the systemic blood pressure response to TBI.Supported by Grants NS 12587 (BGL), NS 29469 (JTP), NS 19550 (LWJ) from the National Institutes of Health and Grant H133B80029 (BGL) from the National Institute on Disability and Rehabilitation Research, the U.S. Department of Education  相似文献   

13.
目的 研究沙土鼠脑缺血后海马CA1区神经细胞凋亡、相关基因表达及亚低温的干预作用. 方法 72只沙土鼠采用随机数字表法分为假手术组(SH)、低温假手术组(HSH)、常温再灌注组(IR)和低温再灌注组(HIR).采用双侧颈总动脉阻断5 min制作脑缺血再灌注损伤模型,各组依术后处死动物时间的不同再分为1、3、7d亚组(n=6),在预定时间点行开阔法迷宫检查、TUNEL法检测海马CA1区神经细胞的凋亡、免疫组化检测肿瘤抑制基因p53、核因子-kB的表达情况.结果 常温状态下脑缺血5 min可诱导沙土鼠1、3、7d的探索活动增加(P<0.051.亚低温状态下仅缺血再灌注后1 d探索活动增加(P<0.05);TUNEL与免疫组化染色显示海马CA1区神经细胞凋亡数量及p53蛋白和NF-KB表达增加,亚低温对以上过程有明显抑制作用(P均<0.05). 结论 海马CA1区p53蛋白和NF-KB表达增加可能是沙土鼠脑缺血5 min神经元凋亡的机制之一,亚低温脑保护机制可能与其对此过程的抑制作用有关.  相似文献   

14.
The metabolic effects of graded whole body hypothermia on complete global cerebral ischemia and recirculation was investigated in the cat. Hypothermia was induced to one of three levels prior to ischemia; T = 26.8 degrees +/- 0.5 degrees C (n = 4), T = 32.1 degrees +/- 0.2 degrees C (n = 5), and T = 34.6 degrees +/- 0.3 degrees C (n = 6), and maintained constant throughout 16 min of ischemia and 1.5-2 h of recirculation. Intracellular cerebral pH and relative concentrations of high-energy phosphate metabolites were continuously monitored, using in vivo 31P nuclear magnetic resonance (NMR) spectroscopy. Except for the first 4 min of ischemia, no significant differences were detected in the response of adenylate intensities and intracellular pH to ischemia and recirculation between the hypothermic groups. The three hypothermic groups were then pooled into one group, and the data compared to previously published data from a normothermic group, T = 38.4 degrees +/- 0.6 degrees C (n = 14), and a hyperthermic group, T = 40.6 degrees +/- 0.2 degrees C (n = 9), subjected to the identical ischemic and NMR measurement protocols. The hypothermic animals exhibited a statistically significant reduction of cerebral intracellular acidosis, both during ischemia and recirculation, as well as a more rapid return of adenylate intensities during recirculation, compared to the normothermic or hyperthermic groups. The data thus suggest that mild hypothermia has an ameliorative affect on brain energy metabolism and intracellular pH under conditions of complete global cerebral ischemia and recirculation.  相似文献   

15.
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19–23 months) was maintained at 36°C (normothermia), 33°C (mild hypothermia) or 30°C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3±0.5, mean±S.E.M.) and moderate hypothermic rats (0.8±0.3) compared with the normothermic ones (3.4±0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.  相似文献   

16.
Abstract

Anoxic depolarization (AD) is one of the major physiological characteristics in the ischemic core. The effect of mild hypothermia on the appearance of AD and subsequent brain injury following profound ischemia is studied to evaluate the protective mechanism of hypothermia against severe ischemia. Sprague-Dawley rats were subjected to transient ischemia by hypotension (50-20 mmHg) and bilateral carotid artery occlusion (BCA-O) for 20 min in normothermia and 30 min in hypothermia. The temperature of body and temporal muscles was maintained at 37.5°C and 36.5°C in normothermia and 33.0°C and 31.0°C in hypothermia, respectively. Recording of the DC potential shift and electrocorticogram and monitoring of the cortical blood flow (CoBF) with a laser Doppler flowmeter were done epidurally on the right parietal cortex. The right parietal cortex pathology was examined 24 h after ischemia in normothermia and after 30 days in hypothermia. AD appeared in all seven normothermic rats with a fall in the CoBF to 9%-10% of the control flow. However, in spite of CoBF reduction to 8%-9% of the control flow, it did not appear in five hypothermic rats. Intra-ischemic CoBF was not statistically different between these two groups. AD appeared with the CoBF decreasing to 4%-5% of the control flow in seven hypothermic rats. Intra-ischemic CoBF in hypothermic rats exhibiting AD was significantly lower than the other two groups. The interval between BCA-O and the appearance of AD in hypothermic rats was 5.1 ± 0.3 min (mean ± SE), which was significantly longer than the 2.2 ± 0.5 min observed in normothermia (p < 0.0005). Of seven normothermic rats exhibiting AD, two died within 24 h and four revealed massive neuronal injury. Of seven hypothermic rats with AD, four died between day 2 and day 13, and one revealed diffuse cerebral infarction. However, no severe ischemic injury or ischemic death was observed in all five hypothermic rats without AD. The incidence of severe neuronal injury or ischemic death was significantly lower in hypothermic rats without AD compared with normothermic rats with AD (p < 0.02) or hypothermic rats with AD (p < 0.05). Although mild hypothermia delays AD, it is suggested that raising the cerebral blood flow threshold for AD appearance has a key role in the hypothermic protection of a severely ischemic area such as the ischemic core. [Neurol Res 1999; 21: 670-676]  相似文献   

17.
Several laboratories have reported a significant reduction of ischemia-induced injury to hippocampal neurons in rodents treated with competitive and noncompetitive N-methyl-D-aspartate (NMDA) receptor-channel antagonists. This study examined the effects of the noncompetitive antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) in Mongolian gerbils subjected to 5 min of bilateral carotid artery occlusion. In adult female gerbils, single doses of MK-801 injected 1 hr prior to ischemia significantly (p less than 0.01) reduced damage to CA1 hippocampal neurons. However, the drug rendered the postischemic animals comatose and hypothermic for several hours compared with the saline-treated animals. In subsequent experiments, animals pretreated with MK-801 and maintained normothermic during and after forebrain ischemia demonstrated no amelioration of hippocampal damage. Gerbils not treated with MK-801, but kept hypothermic in the postischemic period to approximately the same degree (34.5 degrees C) and duration (8 hr) as was induced by MK-801 therapy showed significant (p less than 0.01) protection of CA1 neurons against ischemia. The neuroprotective activity of MK-801 against transient global ischemia appears to be largely a consequence of postischemic hypothermia rather than a direct action on NMDA receptor-channels.  相似文献   

18.
Anoxic depolarization (AD) is one of the major physiological characteristics in the ischemic core. The effect of mild hypothermia on the appearance of AD and subsequent brain injury following profound ischemia is studied to evaluate the protective mechanism of hypothermia against severe ischemia. Sprague-Dawley rats were subjected to transient ischemia by hypotension (50-20 mmHg) and bilateral carotid artery occlusion (BCA-O) for 20 min in normothermia and 30 min in hypothermia. The temperature of body and temporal muscles was maintained at 37.5 degrees C and 36.5 degrees C in normothermia and 33.0 degrees C and 31.0 degrees C in hypothermia, respectively. Recording of the DC potential shift and electrocorticogram and monitoring of the cortical blood flow (CoBF) with a laser Doppler flowmeter were done epidurally on the right parietal cortex. The right parietal cortex pathology was examined 24 h after ischemia in normothermia and after 30 days in hypothermia. AD appeared in all seven normothermic rats with a fall in the CoBF to 9%-10% of the control flow. However, in spite of CoBF reduction to 8%-9% of the control flow, it did not appear in five hypothermic rats. Intra-ischemic CoBF was not statistically different between these two groups. AD appeared with the CoBF decreasing to 4%-5% of the control flow in seven hypothermic rats. Intra-ischemic CoBF in hypothermic rats exhibiting AD was significantly lower than the other two groups. The interval between BCA-O and the appearance of AD in hypothermic rats was 5.1 +/- 0.3 min (mean +/- SE), which was significantly longer than the 2.2 +/- 0.5 min observed in normothermia (p < 0.0005). Of seven normothermic rats exhibiting AD, two died within 24 h and four revealed massive neuronal injury. Of seven hypothermic rats with AD, four died between day 2 and day 13, and one revealed diffuse cerebral infarction. However, no severe ischemic injury or ischemic death was observed in all five hypothermic rats without AD. The incidence of severe neuronal injury or ischemic death was significantly lower in hypothermic rats without AD compared with normothermic rats with AD (p < 0.02) or hypothermic rats with AD (p < 0.05). Although mild hypothermia delays AD, it is suggested that raising the cerebral blood flow threshold for AD appearance has a key role in the hypothermic protection of a severely ischemic area such as the ischemic core.  相似文献   

19.
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19-23 months) was maintained at 36 degrees C (normothermia), 33 degrees C (mild hypothermia) or 30 degrees C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3+/-0.5, mean+/-S.E.M.) and moderate hypothermic rats (0.8+/-0.3) compared with the normothermic ones (3.4+/-0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.  相似文献   

20.
Oxidative damage by free radicals has been proposed as a mechanism of cerebral injury due to ischemia and reperfusion. Hypothermia protects against ischemic necrosis; however, its effect on oxidative stress has not been investigated. In this study, the effects of hypothermia on oxidative stress were studied by determining consumption of endogenous antioxidants after temporary focal ischemia in rats. Thirty-two Sprague-Dawley rats anesthetized with 1.5% isoflurane underwent 3 h of middle cerebral artery occlusion under hypothermic (33°C) or normothermic (37°C) conditions followed by 3 h of normothermic reperfusion. In the first study (n = 8per group), intraischemic hypothermia suppressed the reduction of tissue concentrations of endogenous antioxidants, ascorbate (P≤ 0.05), and glutathione (P≤ 0.05) in ischemic cortex but not in caudoputamen. In a parallel study (n = 8per group), hypothermia reduced tissue damage in ischemic frontoparietal cortex (P ≤ 0.05), but not in caudoputamen. Laser-Doppler estimates of cortical blood flow showed that intraischemic hypothermia significantly attenuated early postischemic hyperperfusion (P ≤ 0.01) and delayed postischemic hypoperfusion (P ≤ 0.01). These results demonstrate that intraischemic mild hypothermia reduces oxidative stress and cell injury after prolonged focal ischemia followed by reperfusion. The reduction of oxidative stress by hypothermia may be related indirectly to attenuation of postischemic blood flow changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号