首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The distribution of the 72-kDa heat-shock protein (hsp72) in rat brain, 24 h following in vivo transient hyperthermia (41.5°C, 15 min), was studied using immunohistochemistry (n=22). Tissue sections were also stained with hematoxylin and eosin, and with an anti-glial fibrillary acidic protein to evaluate neuronal and astrocytic response to transient hyperthermia, respectively. hsp 72 was observed in glia and endothelial cells throughout brain. hsp 72 was also found in neurons located in the: dentate gyrus, habenula, and hypothalamus, granular layer of the cerebellum and the olfactory area. Our data indicate, that hyperthermia causes neuronal expression of hsp72, particularly in cerebral neuronal populations which control the neuroendocrine stress response.Supported in part from NINDS grant PO1 NS23393 and an American Heart Association grant-in-aid (Michigan Affiliated)  相似文献   

2.
LY178002 reduces rat brain damage after transient global forebrain ischemia   总被引:2,自引:0,他引:2  
Several feasible mechanisms have been proposed as sources of neuronal damage from ischemia and subsequent reperfusion. Included among these are oxidative damage caused by free radical production and lipid peroxidation and products derived from phospholipid breakdown. A series of 4-thiazolidinone compounds represented by LY178002 (5-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methylene-4-thiazolidinon e) have been described as inhibitors of multiple enzymes in the arachidonic acid cascade, including fatty acid cyclooxygenase, 5-lipoxygenase, and phospholipase A2. Accordingly, we evaluated LY178002 in a four-vessel occlusion model of global forebrain ischemia with reperfusion. A 2-hour pretreatment of 11 male Wistar rats with 150 mg/kg LY178002 significantly protected against striatal (p = 0.0007) and hippocampal CA1 (p = 0.006) damage after 30 minutes of global ischemia. Similar protection was observed for the striatum (p = 0.005) and hippocampal CA1 layer (p = 0.025) after pretreatment of 13 rats with 50 mg/kg LY178002. We further evaluated LY178002 as a possible inhibitor of lipid peroxidation because part of its chemical structure incorporates the aromatic backbone of the known antioxidant butylated hydroxytoluene. We found LY178002 to be a potent inhibitor of iron-dependent lipid peroxidation. Few substances possessing a single pharmacological activity have been found to be of significant therapeutic benefit in global ischemia of 30 minutes' duration because the mechanisms that lead to cell death in response to ischemia are likely to be multifactorial. Thus, the efficacy of LY178002 in this model may be due to its ability to inhibit multiple sources of damage.  相似文献   

3.
Calpain activity in the rat brain after transient forebrain ischemia.   总被引:11,自引:0,他引:11  
Activity of the Ca(2+)-dependent protease calpain is increased in neurons after global and focal brain ischemia, and may contribute to postischemic injury cascades. Understanding the time course and location of calpain activity in the post-ischemic brain is essential to establishing causality and optimizing therapeutic interventions. This study examined the temporal and spatial characteristics of brain calpain activity after transient forebrain ischemia (TFI) in rats. Male Long Evans rats underwent 10 min of normothermic TFI induced by bilateral carotid occlusion with hypovolemic hypotension (MABP 30 mm Hg). Brain calpain activity was examined between 1 and 72 h after reperfusion. Western blot analysis of regional brain homogenates demonstrated a bimodal pattern of calpain-mediated alpha-spectrin degradation in the hippocampus, cortex, and striatum with an initial increase at 1 h followed by a more prominent secondary increase at 36 h after reperfusion. Immunohistochemical analysis revealed that calpain activity was primarily localized to dendritic fields of selectively vulnerable neurons at one hour after reperfusion. Between 24 and 48 h after reperfusion neuronal calpain activity progressed from the dorsal to ventral striatum, medial to lateral CA1 hippocampus, and centripetally expanded from watershed foci in the cerebral cortex. This progression was associated with fragmentation of dendritic processes, calpain activation in the neuronal soma and subsequent neuronal degeneration. These observations demonstrate a clear association between calpain activation and subsequent delayed neuronal death and suggest broad therapeutic window for interventions aimed at preventing delayed intracellular Ca(2+) overload and pathologic calpain activation.  相似文献   

4.
The potential role of the nonconstitutive 72-kDa heat-shock protein (HSP72) in selective neuronal vulnerability to ischemia was studied in rats subjected to graded global ischemia. Immunocytochemistry using a monoclonal antibody against HSP72 was performed on tissue collected after 24 hr of reperfusion. The appearance of HSP72 immunoreactivity correlated in a graded fashion with those regions known to be selectively vulnerable in ischemia. That is, HSP72 was induced in only hilar interneurons and CA1 pyramidal cells following brief ischemia. After intermediate durations of ischemia, HSP72 was expressed in the CA3 neurons and cortical layers 3 and 5, and after the longest intervals, HSP72 appeared in dentate granule cells. Heat-shock protein expression preceded cell death (assessed with acid fuchsin staining) in all regions. This temporal profile suggests that the capability of neurons to express HSP72 is unlikely to account for selective vulnerability of different brain regions following ischemia; its role in neuroprotection during ischemic injury in vivo remains unknown.  相似文献   

5.
Localization of 70-kDa stress protein induction in gerbil brain after ischemia   总被引:24,自引:0,他引:24  
Summary Induction of the 70-kDa heat shock protein, hsp70, has been demonstrated in brain following experimental stroke. In the present study, hsp70 was localized in gerbil brain at intervals after transient ischemia using a monoclonal antibody specific for stress-inducible forms of hsp70-related proteins. Induced immunoreactivity was found only in neurons, primarily in hippocampus, striatum, entorhinal cortex and some neocortical regions. Notably hsp70 accumulation was minimal in hippocampal CA1 neurons which die after brief ischemic episodes, but was most pronounced in dentate granule cells and CA3 neurons which are spared. The peak of CA3 immunoreactivity occurred at 48-h recirculation, at the onset of CA1 neuron loss at 2–4 days, demonstrating that hsp70 induction is also a component of this delayed hippocampal pathophysiology rather than a direct response to the metabolic disruption of the initial ischemic episode. These results suggest that hsp70 immunocytochemistry may serve as a marker for neuronal circuitry involved in proposed excitotoxic mechanisms after ischemia and other stresses. Control animals showed immunoreactivity in ependymal cells lining the ventricles, indicating a role for hsp70 in normal functioning of these specialized cells.  相似文献   

6.
The effect of hypothermia on ischemic injury of the cochlea in gerbils was studied with particular regard to glutamate efflux in the perilymph. Under normothermic conditions interruption of the blood supply to the cochlea for 15 min caused a remarkable elevation of the compound action potential (CAP) threshold, and an increase in perilymphatic glutamate. The CAP threshold recovered to some extent with reperfusion, but not to preischemic levels. CAP thresholds, under hypothermic conditions and with reperfusion, recovered promptly to near pre-ischemic levels, while glutamate concentration did not change. These results, together with electron microscopy studies, suggest that hypothermia prevents hearing loss primarily through reduction of glutamate efflux at the synopses between inner hair cells and primary afferent auditory neurons.  相似文献   

7.
The role of calpain and caspase family proteases in postischemic neuronal death remains controversial. This study compared the timing, location, and relative activity of calpains and caspases in the adult rat brain following 10 min of transient forebrain ischemia. Western blots of cortical, striatal, and hippocampal homogenates demonstrated a alpha-spectrin cleavage pattern indicative of predominant calpain activity, which peaked between 24 and 48 h after reperfusion. However, immunohistochemical evidence of both caspase 3 activation and caspase-mediated substrate cleavage was detected as early as 1 h and as late as 7 days after reperfusion in circumscribed neuronal populations. Simultaneous or sequential caspase and calpain activation was also observed suggesting the potential for interaction of these protease systems. The complex spatiotemporal pattern of calpain and caspase activity observed in this study provides important insights for the development and evaluation of therapeutic strategies to reduce protease-mediated injury following global brain ischemia.  相似文献   

8.
We investigated the expression, activation, and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38s) and extracellular signal-regulated kinases (ERKs) using Western blotting and immunohistochemistry in gerbil hippocampus after transient forebrain ischemia to clarify the role of these kinases in delayed neuronal death (DND) in the CA1 subfield. Immunoblot analysis demonstrated that activities of JNK, p38, and ERK in whole hippocampus were increased after 5 min of global ischemia. We used an immunohistochemical study to elucidate the temporal and spatial expression of these kinases after transient global ischemia. The immunohistochemical study showed that active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and then gradually reduced and disappeared in the hippocampal CA1 region. On the other hand, in CA3 neurons, active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and peaked at 6 hr of reperfusion and then gradually reduced but was continuously detected 72 hr after ischemia. Active ERK immunoreactivity was observed transiently in CA3 fibers and dentate gyrus. Pretreatment with SB203580, a p38 inhibitor, but not with PD98059, an ERK kinase 1/2 inhibitor, reduced ischemic cell death in the CA1 region after transient global ischemia by inhibiting the activity of p38. These findings indicate that the p38 pathway may play an important role in DND during brain ischemia in gerbil. Components of the pathway are important target molecules for clarifying the mechanism of neuronal death.  相似文献   

9.
The cellular localization and spatiotemporal expression pattern of APG-2 protein, a member of the heat shock protein 110 family, were investigated in the rat hippocampus after transient forebrain ischemia. The spatiotemporal patterns of immunoreactivity of both APG-2 and glial fibrillary acidic protein were very similar, indicating that reactive astrocytes express APG-2, which was confirmed by double immunofluorescence histochemistry. Colocalization of APG-2 and a neuronal marker NeuN in the neurons of the CA2 and CA3 subfields was also confirmed.  相似文献   

10.
BACKGROUND AND PURPOSE: The significance and physiological implications of the expression of the 72-kd heat-shock protein in ischemic tissue are unknown. To enhance our understanding of the relation between ischemic cell damage and 72-kd heat-shock protein expression, we evaluated the cellular expression and the anatomic distribution of 72-kd heat-shock protein in conjunction with the morphological analysis of rat brain, as a function of the duration of a single arterial occlusion. METHODS: Adult Wistar rats were subjected to graded transient middle cerebral artery occlusion (for a duration of 10, 20, 30, 60, 90, and 120 minutes and sham; n = 4 per group). Forty-eight hours after reopening the artery, brain tissue sections were analyzed to determine the extent of neuronal damage (hematoxylin and eosin staining), the extent of astrocytic reactivity (immunohistochemistry, using anti-glial fibrillary acidic protein), and the distribution of 72-kd heat-shock protein (immunohistochemistry, using a monoclonal antibody to 72-kd heat-shock protein). RESULTS: We found that 72-kd heat-shock protein was sequentially expressed in morphologically intact neurons, microglia, and endothelial cells with increasing duration of ischemia; 72-kd heat-shock protein immunoreactivity was not detected in astrocytes. The duration of ischemia required to evoke a 72-kd heat-shock protein response in neurons was dependent on the anatomic site and followed a pattern of increasing neuronal sensitivity to ischemic cell damage with duration of ischemia: 72-kd heat-shock protein and neuronal damage were sequentially detected in the caudate putamen, globus pallidus, cerebral cortex, amygdala, and hippocampus with increasing duration of ischemia. With ischemia of long duration (greater than or equal to 90 minutes), neurons expressing 72-kd heat-shock protein were localized to a zone peripheral to the severely damaged ischemic core. CONCLUSIONS: These studies suggest that 1) the expression of 72-kd heat-shock protein in neurons precedes the development of ischemic cellular alterations detectable by conventional hematoxylin and eosin light microscopy methods; 2) there is a hierarchy of cell types and anatomic sites that express 72-kd heat-shock protein, and this hierarchy reflects cellular and anatomic vulnerability to ischemic cell damage; and 3) 72-kd heat-shock protein induction in neurons bordering a necrotic ischemic core may be the morphological equivalent of the ischemic penumbra.  相似文献   

11.
It has recently been shown that 5-HT(1A) receptor stimulation reduced the infarct volume after occlusion of the middle cerebral artery in rats. Since there is increasing evidence that apoptosis is involved in neurodegenerative diseases and stroke, we investigated whether the 5-HT(1A) agonist Bay x 3702 could protect neurons against apoptotic damage in a rat model of transient forebrain cerebral ischemia. Bay x 3702 (4 microg/kg i.v.) caused a 10% reduction of neuronal damage in the hippocampal CA1 subfield. Higher doses of Bay x 3702 (40 and 12 microg/kg i.v.) did not cause any neuroprotective effect, most likely because of the strong reduction of mean arterial blood pressure during the period of Bay x 3702 infusion. Bay x 3702 (4 microg/kg i.v.) diminished DNA laddering in the hippocampus and striatum 4 days after 10 min forebrain ischemia. These results were confirmed by TUNEL-staining. The anti-apoptotic effect was abolished by additional treatment with the 5-HT(1A) receptor antagonist WAY 100635 (1 mg/kg). Taken together, the results suggest that Bay x 3702 can rescue hippocampal as well as striatal neurons from apoptotic cell death in vivo via stimulation of 5-HT(1A) receptors.  相似文献   

12.
It has recently been shown that 5-HT1A receptor stimulation reduced the infarct volume after occlusion of the middle cerebral artery in rats. Since there is increasing evidence that apoptosis is involved in neurodegenerative diseases and stroke, we investigated whether the 5-HT1A agonist Bay x 3702 could protect neurons against apoptotic damage in a rat model of transient forebrain cerebral ischemia. Bay x 3702 (4 μg/kg i.v.) caused a 10% reduction of neuronal damage in the hippocampal CA1 subfield. Higher doses of Bay x 3702 (40 and 12 μg/kg i.v.) did not cause any neuroprotective effect, most likely because of the strong reduction of mean arterial blood pressure during the period of Bay x 3702 infusion. Bay x 3702 (4 μg/kg i.v.) diminished DNA laddering in the hippocampus and striatum 4 days after 10 min forebrain ischemia. These results were confirmed by TUNEL-staining. The anti-apoptotic effect was abolished by additional treatment with the 5-HT1A receptor antagonist WAY 100635 (1 mg/kg). Taken together, the results suggest that Bay x 3702 can rescue hippocampal as well as striatal neurons from apoptotic cell death in vivo via stimulation of 5-HT1A receptors.  相似文献   

13.
We examined cerebral lipid peroxidation, estimated by a thiobarbituric acid test, in rat brain regions after 30 minutes of severe forebrain ischemia and at recirculation periods of up to 72 hours. The lipid peroxide levels remained unaltered in all brain regions during ischemia and during the first hour of recirculation but were selectively increased between 8 and 72 hours of recirculation in the ischemia-sensitive regions of the hippocampus, striatum, and cortex. The most pronounced increases (30-37%) were seen at 48 hours of recirculation. In contrast, lipid peroxide levels were unchanged in infarcted brain regions 24 hours after intracarotid injection of microspheres, indicating that reoxygenation of the ischemic brain is a prerequisite for lipid peroxidation. We assessed the lipid peroxidation capacity of cerebral homogenates obtained from rats subjected to ischemia and recirculation by measuring the production of lipid peroxides after aerobic incubation. The homogenates from rats exposed to 30 minutes of ischemia or to 1 hour of recirculation were not more susceptible to peroxidation. However, the production of lipid peroxides was selectively increased in the hippocampus, striatum, and cortex at 8-48 hours of recirculation, suggesting a loss of efficacy of the antioxidant systems. These results, showing a delayed and long-lasting increase in lipid peroxidation that occurs in ischemia-sensitive brain regions and parallels the development of neuronal necrosis, support the hypothesis that free radical processes participate in postischemic neuronal damage.  相似文献   

14.
Several investigations have postulated evidence of the involvement of apoptosis in delayed neuronal death following brief periods of global cerebral ischemia. Apoptosis may be closely linked to mitochondrial dysfunction. Heat shock protein (HSP) 60 and HSP10 are mitochondrial matrix proteins induced by stress and form the chaperonin complex that is implicated in protein folding and assembly within the mitochondria. This study investigated the induction of these mitochondrial stress protein genes in the hippocampal CA1 region and less vulnerable regions following transient forebrain ischemia. In situ hybridization analysis revealed that the induction pattern of HSP60 mRNA was identical to that of HSP10 mRNA throughout the entire ischemic course. No changes occurred in the expression of both mRNAs after 2 min ischemia. Strong induction of both mRNAs occurred in the CA1 region after 10 min ischemia and persisted until 1 d after reperfusion. In contrast, induction of both mRNAs in the less vulnerable regions was terminated by 1 d after reperfusion. These results demonstrate that mitochondrial stress conditions persist concomitantly with cytosolic stress conditions in regions vulnerable to transient forebrain ischemia.  相似文献   

15.
16.
The influence of transient forebrain ischemia on the temporal alteration of glutamate receptors in the hippocampal formation was analyzed by means of in vitro quantitative receptor autoradiography. We compared the binding of N-methyl-D-aspartate (NMDA) receptors using [3H]3-[+/-)2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), noncompetitive NMDA antagonist binding sites using [3H]N-(1-(2-thienyl)-cyclohexyl)-3,4-piperidine (TCP), and kainate (KA) receptors. In the CA1 subfield of the hippocampus, the number of NMDA receptors and noncompetitive NMDA antagonist binding sites remained constant during the early stage of recirculation when the CA1 pyramidal cells remained histologically intact. A significant reduction of these receptor densities was observed 7 days following ischemia, when NMDA receptors and noncompetitive NMDA antagonist binding sites lost 64 and 29% of their binding sites in the stratum radiatum of the CA1, respectively. The KA receptor density in the CA1 subfield decreased by 44% 7 days after ischemia. Marked loss of the above-mentioned receptors in the CA1 after selective depletion of the CA1 pyramidal cells indicated that NMDA receptors, noncompetitive NMDA antagonist binding sites, and KA receptors in the CA1 are predominantly localized on the CA1 pyramidal cells. NMDA receptor density in the CA3 gradually decreased during the recirculation period. The stratum moleculare of the dentate gyrus, whose structure was histologically intact after ischemic insult, also showed a reduction of NMDA receptors 7 days following ischemia. [3H]KA receptor density in the stratum lucidum of the CA3 and in the hilus also decreased during recirculation. These  相似文献   

17.
To investigate cerebral injury in the monkey due to transient ischemia, monkeys were each subjected to temporary occlusion of eight (bilateral common carotid, internal and external carotid, and vertebral) major arteries. After 0 (control), 5, 10, 13, 15, and 18 min occlusion, blood flow was restored. The monkeys were sacrificed by perfusion fixation 5 days after the operation, and all brain regions were then histologically examined for ischemic neuronal changes induced by the occlusion. The amplitude of EEG signals from skull and scalp became almost isoelectric within 1-6 min after the onset of occlusion. The EEG signals from the hippocampus were markedly attenuated within 1-4 min, although they did not become completely isoelectric. Blood pressure was significantly increased after 10-min ischemia. Five-min occlusion produced no ischemic neuronal changes except a slight increment of glial cells in the striatum and III, V, and VI layers of the neocortices. After 10- to 15-min occlusion, there were ischemic cell changes restricted exclusively to the CA1 subfield of the hippocampus. Eighteen-min occlusion produced more prominent ischemic neuronal damage in the CA1 subfield of the hippocampus, but ischemic neuronal damage was no longer confined to the hippocampus. These results suggest that only the CA1 subfield of the monkey hippocampus could be damaged by mild ischemic insult. We demonstrate that the limited lesion of the hippocampus, especially the CA1 subfield, after 10- to 15-min occlusion of eight arteries in the monkey, produces a model equivalent to human amnesia caused by transient ischemic insult.  相似文献   

18.
Induction of the 72-kDa heat shock protein expression is thought to protect neurons against the subsequent effects of ischemia. However, it is not clear whether the induction of 72-kDa heat shock protein expression by an ischemic event improves neuronal survival. To address this question, we outlined the temporal profile of neuronal induction and expression of the 72-kDa heat shock protein in a model of transient focal ischemia in the rat. Fifty two adult Wistar rats were subjected to middle cerebral artery occlusion of 2 h duration. At 0.5, 3, 6, 9, 12, 24, 48, 96 and 168 h after reopening the artery, coronal brain sections were analyzed using both immunohistochemical methods and hematoxylin and eosin staining to determine the topographic and cellular distribution of the 72-kDa heat shock protein, as well as the extent of neuronal damage. Immunoreactivity to the 72-kDa heat shock protein was not detected in neurons that were destined to become necrotic, and were located in the ischemic core of the brain lesions. However, 72-kDa heat shock protein expression was evident in morphologically intact neurons located in the peripheral zone. The earliest neuronal expression of 72-kDa heat shock protein was detected in animals in which the 2 h occlusion of the middle cerebral artery was followed by 6 h recirculation; the intensity of the 72-kDa heat shock protein immunoreactivity peaked at 48 h, and progressively disappeared 7 days after the ischemic reperfusion event. These studies suggest that (1) 72-kDa heat shock protein is not expressed in morphologically intact neurons destined to become necrotic after 2 h of focal ischemia; (2) the 72-kDa heat shock protein is expressed only in morphologically intact neurons located at the periphery of the ischemic territory where they may be subjected to only sublethal stress; these neurons preserved their integrity 7 days after the ischemic episode. These data support the hypothesis that the expression of 72-kDa heat shock protein in ischemic brain may confer “protection” to the neurons.  相似文献   

19.
Protein synthesis at various recirculation times after 5-min transient forebrain ischemia was evaluated in gerbil hippocampal CA1 pyramidal neurons that had acquired tolerance to delayed-type ischemic injury. Evaluation was performed by observing polyribosomes under electron microscopy, and by [14C] leucine autoradiography. Hippocampal CA1 pyramidal neurons in the gerbils acquired stable and reproducible tolerance to delayed-type ischemic injury subsequent to a 5-min ischemia by pretreatment that consisted of loading two 2-min ischemic periods at a 1-day interval, followed by 48 h of recirculation. During the early phase following the 5-min ischemia, polyribosomal disaggregation, loss of dendritic microtubules, and significant suppression of radiolabeled leucine incorporation were observed in the tolerance-induced CA1 neurons as well as in the non-tolerance-induced neurons. While these findings persisted in the non-tolerance-induced neurons throughout the duration of the experiment, most of the tolerance-induced neurons demonstrated reaggregation of cytosomal ribosomes, increase in the number of dendritic microtubules, and restoration of impaired amino acid incorporation 24 h after the ischemia. These findings suggest that revovery of protein synthesis during the early post ischemic phase is essential for CA1 neuron survival after ischemic injury.Supported by the Ehime Health Foundation. This study was carried out in compliance with the Guidelines for Animal Experimentation at Ehime Univesity School of Medicine, Ehime, Japan  相似文献   

20.
The authors previously demonstrated that Ca2+/calmodulin (CaM)-dependent protein kinase IIalpha (CaM-KIIalpha) can phosphorylate neuronal nitric oxide synthase (nNOS) at Ser847 and attenuate NOS activity in neuronal cells. In the present study, they established that forebrain ischemia causes an increase in the phosphorylation of nNOS at Ser847 in the hippocampus. This nNOS phosphorylation appeared to be catalyzed by CaM-KII: (1) it correlated with the autophosphorylation of CaM-KIIalpha; (2) it was blocked by the CaM-KII inhibitor, KN-93; and (3) nNOS and CaM-KIIalpha were found to coexist in the hippocampus. Examination of the spatial relation between nNOS and CaM-KIIalpha in the brain revealed coexistence in the hippocampus but not in the cortex during reperfusion, with a concomitant increase in autophosphorylation of CaM-KIIalpha. The phosphorylation of nNOS at Ser847 probably takes place in nonpyramidal hippocampal neurons, which increased after 30 minutes of reperfusion in the hippocampus, whereas no significant increase was detected in the cortex. An intraventricular injection of KN-93 significantly decreased the phosphorylation of nNOS in the hippocampus. These results point to CaM-KII as a protein kinase, which by its colocalization may attenuate the activity of nNOS through its Ser847 phosphorylation, and may thus contribute to promotion of tolerance to postischemic damage in hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号