首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
在自然界中,微生物以群落状态生存,通过物种内或物种间的相互作用,不断重塑生态关系来实现共同进化。这种相互作用促使微生物合成大量复杂的次级代谢产物作为通讯工具或者化学武器,来适应环境变化,这些小分子则是药物发现的重要源泉。微生物共培养技术通过模拟自然生态关系,激活沉默基因簇来促进新型天然产物的发现。综述基于不同共培养体系的微生物天然产物挖掘最新进展,重点介绍微生物之间的相互作用机制以及沉默基因簇激活的分子机制,为微生物天然产物的化学多样性挖掘提供参考。  相似文献   

2.
3.
目的综述了近年来细菌沉默基因簇激活策略的研究进展。方法通过查阅文献对激活细菌沉默基因簇的研究进展进行了总结。结果微生物基因组序列的持续揭示表明,细菌在合成各种天然产物方面蕴藏着巨大的、尚未开发的潜能。一般来说,这些天然产物一直是药物先导化合物的重要来源。在标准的实验室条件下,大多数生物合成基因簇处于低表达或沉默状态。为此,我们回顾了近年来已开发的三种激活沉默生物合成基因簇的方法:使用CRISPR/Cas9插入活性启动子,高通量筛选激活剂用以鉴定小分子诱导剂,以及报告基因指导下的突变体筛选用以构建高产菌株。结论结合以前实施的策略,这些方法有望在未来几年内获得由这些沉默基因簇编码的天然产物。  相似文献   

4.
目的 对单菌多次级代谢产物(One strain many compounds, OSMAC)策略在微生物次级代谢产物研究中的应用进展进行综述。方法 查阅近年来的相关文献,对微生物次级代谢产物研究中所应用的OSMAC策略进行分类和归纳总结。结果 近年来所应用的OSMAC策略主要包括改变培养基、改变培养条件或培养状态、混合培养、化学表观遗传修饰、添加酶抑制剂或其他物质等。结论 OSMAC策略在激活微生物沉默基因、增加次级代谢产物多样性方面发挥了重要作用,随着现代科学技术的发展,OSMAC策略与新技术结合必然会成为发现新药和先导化合物的一条重要途径。  相似文献   

5.
微生物天然产物的生物合成是一个从基因到化合物的过程。微生物基因组内未被发掘的孤儿或沉默途径所编码的新型次级代谢产物的合成潜力远远超过现已发现的代谢产物数量。微生物基因组大规模测序的广泛开展,为天然产物的发现和研究提供了新的研究领域和契机。本文主要介绍基于微生物基因组序列的新型天然产物的发现策略及其研究进展。可以预计,随着实验技术的不断发展,采用基于基因的药物发现模式可以充分发掘微生物产生天然产物的潜力,微生物基因组内的孤儿或沉默途径编码的未知代谢产物将成为新药开发的重要源泉。  相似文献   

6.
海洋微生物次级代谢产物生物合成的研究进展   总被引:1,自引:0,他引:1  
海洋微生物次级代谢产物往往具有新颖的化学结构,蕴含着独特的生物合成途径、酶学机理和不同于陆生放线菌次级代谢产物的生物合成机制。自从2000年第一例海洋微生物天然产物enterocin的生物合成基因簇被阐明以来,迄今已克隆和鉴定了27种海洋微生物次级代谢产物的完整生物合成基因簇。这些次级代谢产物的生物合成主要源于四种途径,包括聚酮合酶途径,非核糖体肽合成酶途径,聚酮-非核糖体肽合成酶杂合途径,以及其他途径。本文综述了近年来一些重要海洋微生物活性次级代谢产物的生物合成途径,以及组合生物合成技术在海洋微生物次级代谢产物结构多样化方面的应用。  相似文献   

7.
真菌是药物先导结构的重要来源,得益于基因组测序技术的飞速发展,生物信息学分析发现真菌中存在大量次级代谢产物基因簇。而这些基因簇在常规实验室培养条件下往往不表达代谢产物,被称之为“沉默”基因。同时,随着天然产物分离技术在日益进步,结构新颖的天然产物发现的几率却在减少。因此如何借助基因组数据分析并激活沉默的基因簇,“解密”天然产物的宝藏,挖掘真菌潜在的代谢潜能成为研究热点。本文主要介绍了基因组导向的丝状真菌沉默生物合成基因簇的激活策略。  相似文献   

8.
真菌次级代谢产物结构新颖、活性显著,是药物先导化合物的重要来源。然而,大量已知化合物的重复分离限制了传统真菌天然产物研究的快速发展。化学表观遗传修饰法是一种真菌代谢调控的简便、有效方法,其通过在培养基中添加化学表观遗传修饰剂激活真菌的沉默代谢途径获得隐蔽天然产物。本文综述了2016年至2020年间采用化学表观遗传修饰法增加真菌次级代谢产物化学多样性的最新研究进展,以期为真菌天然产物的深入研究提供参考。  相似文献   

9.
生物药物素及其寻找   总被引:2,自引:0,他引:2  
微生物产生的次级代谢产物具有各种不同的生物活性,抗生素是人们熟悉的有抗微生物、抗肿瘤作用的微生物次级代谢产物。可是微生物产生的非抗生素的生物活性物质由于研究起步比较迟,所以人们对这类药物比较陌生。近年来,随着天然产物化学研究的广泛深入,随着越来越多疾病确定在分子学  相似文献   

10.
玫瑰孢链霉菌是重要抗生素达托霉素的产生菌。基因组挖掘发现该菌具有丰富的次级代谢产物合成潜力,激活沉默次级代谢产物生物合成基因簇,发现了10多种具有多种生物活性的次级代谢产物。本文回顾了玫瑰孢链霉菌次级代谢产物的研究进展,以及激活这些沉默生物合成基因簇的研究策略。这些研究为其他链霉菌基因组挖掘提供了有效的思路和方法学参考。  相似文献   

11.
《中国抗生素杂志》2021,45(12):1201-1207
本文以天蓝色链霉菌(Streptomyces  相似文献   

12.
本文以天蓝色链霉菌(Streptomyces coelicolor)中黄色色素coelimycin生物合成调控及开发策略的研究进展为代表,介绍了链霉菌中沉默生物合成基因簇调控激活的新进展,为链霉菌天然产物基因簇的挖掘和新次级代谢产物的发现提供研究思路。  相似文献   

13.
Traditionally, natural products have been important sources of new leads for the pharmaceutical industry, but with discovery rates of novel structural classes in decline, the need to bioprospect alternate sources of chemical diversity is evident. Microbial genome sequencing projects have revealed the presence of 'silent' biosynthetic gene clusters where there is no current detectable product. Likewise, culture-independent techniques have provided access to the collective genomes of environmental microflora. Both sources of molecular diversity could encode potentially valuable metabolites. The ability to measure the entire complement of metabolites within microorganisms that are used as surrogate hosts to express such gene clusters will be crucial to the exploitation of these yet untapped reservoirs of metabolic diversity for future natural product drug discovery.  相似文献   

14.
摘要:雷帕链霉菌(Streptomyces rapamycinicus)是一种重要的工业菌株,主要用于生产新型大环内酯类抗生素——雷帕霉 素。该抗生素具有抗真菌、抗肿瘤、免疫抑制和抗衰老等众多生物活性,临床上主要用作器官移植的免疫抑制剂以及抗肿瘤药 物。全基因组测序表明,雷帕链霉菌野生型菌株NRRL5491基因组全长12.7Mb,编码多达48个次级代谢产物生物合成基因簇(共 长达3Mb),证明其具备强大的次级代谢潜力。除雷帕霉素以外,至今已有多种活性天然产物被鉴定,包括放线菌酸、尼日利亚 菌素、洋橄榄叶素、安莎类抗生素和六烯类抗生素等,相关合成基因簇及其生物合成途径已被解析。本文将就雷帕链霉菌中各 种次级代谢产物的生物学功能、生物合成基因簇及其生物合成过程等研究进展进行总结梳理,并就如何更好挖掘雷帕链霉菌中 的活性天然产物进行简单展望与讨论。  相似文献   

15.
目的 挖掘海鞘来源放线菌Streptomyces pratensis SCSIO LCY05生产含肉桂酰独特结构单元的skyllamycins类环肽的潜能,并深入分析skyllamycins生物合成基因簇的新特征。方法 利用Illumina Hiseq和Pacbio SMRT测序平台对S. pratensis SCSIO LCY05基因组DNA其进行全基因组测序,通过生物信息学手段对菌株基因组的生物合成基因簇进行预测和基因功能注释,采用OSMAC (one strain many compounds) 策略对S. pratensis SCSIO LCY05菌株进行发酵优化,结合萃取法、色谱学和波谱学等方法对该菌株的次级代谢产物进行分离和结构鉴定,并对得到的化合物的生物合成途径进行推导及对新颖的合成特征进行挖掘。结果 全基因组测序结果表明,S. pratensis SCSIO LCY05菌株的基因组全长为8.42 Mbp,共含有35个生物合成基因簇,该基因组上的基因簇20与skyllamycins生物合成基因簇的相似度为95%。在OSMAC策略的优化基础上,发现S. pratensis SCSIO LCY05菌株在SCAS培养基中出现了两个具有典型吸收特征的峰,经鉴定为skyllamycin A和skyllamycin B环肽化合物,并推导了其生物合成途径。进一步的聚类分析发现skyllamycins装配线上的C11结构域可能是具有缩合和异构化双重功能的结构域,负责skyllamycins中第11个氨基酸的组装和异构化。结论 本研究不仅发现海鞘来源放线菌S. pratensis SCSIO LCY05经OSMAC策略的优化后可产生skyllamycins类环肽化合物,并揭示了skyllamycins生物合成过程中的新特征,同时也为skyllamycins类化合物生物合成机制的深入阐释及其进一步的开发利用提供了新的菌株资源。  相似文献   

16.
Streptomyces is a genus of soil dwelling bacteria with the ability to produce natural products that have found widespread use in medicine. Annotation of Streptomyces genome sequences has revealed far more biosynthetic gene clusters than previously imagined, offering exciting possibilities for future combinatorial biosynthesis. Experiments to manipulate modular biosynthetic clusters to create novel chemistries often result in no detectable product or product yield is extremely low. Understanding the coupling between components in these hybrid enzymes will be crucial for efficient synthesis of new compounds. We are using new algebraic approaches to predict protein properties, and homologous recombination to exploit natural evolutionary constraints to generate novel functional enzymes. The methods and techniques developed could easily be adapted to study modular, multi-interacting complex systems where appreciable biochemical and comparative sequence data are available, for example, clinically significant non-ribosomally synthesised peptides and polyketides.  相似文献   

17.
基因工程技术的不断成熟使得人们寻找新抗生素和新生理活性物质的途径更加多样化,更具针对性。本文将具体介绍一种利用重金属选择压力激活金属耐受放线菌的沉默基因以获得新抗生素的方法,以及人们分析基因组测序发现很多隐藏的生物合成基因簇得到大量新的生物活性物质的方法,为今后科研工作做参考。  相似文献   

18.
Li SM  Heide L 《Planta medica》2006,72(12):1093-1099
Plants and microorganisms are the most important sources of secondary metabolites in nature. For research in the functional genomics of secondary metabolism, and for the biotechnological application of such research by genetic engineering and combinatorial biosynthesis, most microorganisms offer a unique advantage to the researcher: the biosynthetic genes for a specific secondary metabolite are not scattered over the genome, but rather are clustered in a well-defined, contiguous region - the biosynthetic gene cluster of that metabolite. This is exemplified in this review for the biosynthetic gene clusters of the aminocoumarin antibiotics novobiocin, clorobiocin and coumermycin A (1), which are potent inhibitors of DNA gyrase. Cloning, sequencing and analysis of the biosynthetic gene clusters of these three antibiotics revealed that the structural differences and similarities of the compounds are perfectly reflected by the genetic organisation of the biosynthetic gene clusters. The function of most biosynthetic genes could be identified by gene inactivation experiments as well as by heterologous expression and biochemical investigation. The prenylated benzoic acid moiety of novobiocin and clorobiocin, involved in the interaction with gyrase, is structurally similar to metabolites found in plants. However, detailed investigations of the biosynthesis revealed that the biosynthetic pathway and the enzymes involved are totally different from those identified in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号