首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用聚甲基二间苯二乙炔基硅烷树脂(PSA)改性二氧化双环戊二烯(R122环氧树脂)得到R122/PSA树脂体系,并以该树脂为基体制备了玻璃纤维复合材料。通过FTIR、DSC和TGA研究了R122/PSA树脂的固化反应及其耐热性能,同时研究了R122/PSA基复合材料的力学性能、耐热性能、介电性能和耐水性能。结果表明:改性树脂在高温下保持了良好的耐热性能,mPSA/mR122=02的固化物在800 °C下质量保留率比纯R122树脂的提高了30%。所制备的复合材料常温下弯曲强度达到735 MPa,220 °C下的弯曲强度达到4184 MPa,不仅保留了良好的力学性能,而且耐热性能得到了很好的提升,同时其浸泡96 h后的吸水率仅为065%,耐水性能优异。  相似文献   

2.
用一种硅炔杂化树脂聚(甲基硅烷-二乙炔基苯)(PSP)改性有机硅树脂(HS),通过FT-IR和TGA研究了树脂体系的固化反应及耐热性,并对制备的复合材料进行力学性能、耐热性能和介电性能研究。结果表明:当HS与PSP的质量比为5∶5时综合性能最优,树脂体系在氮气氛围下质量损失5%时的温度(Td5)为691 °C,1 000 °C时质量保留率为88%;HS-PSP树脂短切玻纤复合材料冲击强度为21 kJ/m2,弯曲强度为65 MPa,200 °C时的弯曲强度高温保留率为78%,介电常数为4.6,介电损耗因数为7.9×10-3,体积电阻为6.7×1013 Ω。改性后的复合材料具有优异的力学、耐热和介电性能。  相似文献   

3.
用双(N-间乙炔基苯基邻苯二甲酰亚胺)醚(DAIE)改性苯乙炔基硅氧硼烷(PESB)制得复合材料基体树脂(PESBDAIE)。通过FT-IR、DSC和TG研究了PESBDAIE的固化反应及耐热性。将PESBDAIE与纤维复合制得复合材料,研究了该材料的耐热性、弯曲强度及断面形貌。研究结果表明,固化物在氮气气氛下质量损失5%时的温度(T5%)为576 °C,空气气氛下T5%为507 °C。复合材料在500 °C下放置10 min后质量保留率为97.0%,弯曲强度为176 MPa。  相似文献   

4.
通过格氏试剂反应制得了改性硅炔杂化树脂(GMD)。采用DSC、TGA等分析方法研究了GMD的固化反应及耐热性能。结果表明:GMD固化物在氮气气氛下质量损失5%时的温度(Td5)为631 °C,1 000 °C时的质量残留率为59%。所制备的玻璃纤维增强复合材料在常温下的弯曲强度为320 MPa,在240 °C的弯曲强度保留率高达90%,空气条件下经500 °C处理7 min后,质量保留率仍达到99.7%。该复合材料的玻璃化温度大于400 °C,具有优异的耐热性能、力学性能及介电性能。  相似文献   

5.
四(3乙炔苯胺)基硅烷(TEAS)具有合成简单、溶解性好、固化温度低且固化后耐热性好等优异的性能,但以其作为基体树脂制得的玻璃纤维增强复合材料的力学性能较低。将双(N间乙炔基苯基邻苯二甲酰亚胺)醚(DAIE)与四(3乙炔苯胺)基硅烷(TEAS)以适当的比例混合,制得复合材料基体树脂,即TEASDAIE。用TEASDAIE与玻璃纤维复合制得复合材料,并研究了该复合材料的耐热性、力学性能、介电性能、吸水性、断面形貌等。结果表明:复合材料具有优良的力学性能,其在常温下的弯曲强度为385.7 MPa,2  相似文献   

6.
甲基二苯乙炔基硅烷(MDPES)是一种新型耐高温有机硅树脂,由于主链中含有硅原子单元、乙炔单元和苯基,因此具有优良的耐热性能和介电性能。经双马来酰亚胺(BMI)改性后,MDPES/BMI复合材料不仅保留了良好的耐热性能和介电性能,而且力学性能也得到了极大的改善。  相似文献   

7.
制备了双(N-间乙炔基苯基邻苯二甲酰亚胺)醚(BE)改性甲基二苯乙炔基硅烷(MDPES)(BE/MDPES)。研究表明,选择BE/MDPES的固化温度时,必须同时考虑网络的形成反应和BE中醚键的断裂反应。当最终固化温度控制在300℃时,mBE/mMDPES=4/5的玻璃纤维复合材料的弯曲强度高达275MPa,235℃时的高温弯曲强度为241MPa,保留率达88.5%,且优异的耐热性能与介电性能保持不变。  相似文献   

8.
以二氯甲基硅烷和间二乙炔基苯为原料,通过有机镁格氏试剂与卤代硅烷的缩合反应,合成得到了一种新结构的聚(间乙炔基 甲基氢苯基硅烷)树脂(PCS)。采用FT-IR、1H-NMR、13C-NMR和GPC对树脂的结构进行了表征,采用DSC和TGA对树脂的固化反应和热稳定性能进行了研究。结果表明:PCS树脂在 160 °C及 240 °C处有固化反应放热峰;其固化产物具有优异的耐热及耐热氧化性能,在氮气与空气氛围下质量损失5%的温度(Td5)分别为644、595 °C,而1 000 °C的质量保留率分别为 89.0%、57.9%。  相似文献   

9.
以四氯化锆、苯乙炔和间乙炔基苯胺(APA)为原料,通过先驱体合成法制备新型含锆有机先驱体树脂——含Zr聚乙炔基苯胺树脂(ZAPA)。通过FT-IR表征了其结构,利用DSC及FT-IR研究了其固化反应,通过TG研究了其固化物的耐热性能,采用XRD和EDS研究了其固化物的烧结性能。结果表明:ZAPA树脂可以发生固化交联反应,其固化物相对于APA的固化物具有更好的耐热性能,在N2气氛下,ZAPA树脂固化物失重5%的温度为445 °C,1 000 °C下的质量残余率为43.7%;在空气气氛中,1 000 °C下烧结5 h后,可形成ZrO2晶体。  相似文献   

10.
通过邻苯二甲酸二烯丙基酯(DAP)与间苯二甲酸二烯丙基酯(DAIP)共聚,再与增韧剂共固化,对DAIP 树脂体系进行改性研究.结果表明:DAP的引入可降低体系的交联密度,显著改善固化产物的冲击及弯曲强度.当共聚液中DAP质量百分数达到40%时,体系的冲击强度比原DAIP增韧体系提高了67%,弯曲强度提高了30%,同时改性后体系仍然保持较高的热变形温度及优良的介电、耐水性能.  相似文献   

11.
首先以4,4-联苯二甲醚(BMBP)和2,6-二甲基苯酚为单体、对甲苯磺酸(PTS)为催化剂,合成了联苯基酚单体(BDBP)。将BDBP进行氰化后,成功制备了一种新型联苯基二元氰酸酯(BDBPCy)。利用红外光谱(FT-IR)和质谱(MS)对酚中间体及氰酸酯单体结构进行了表征。通过差示扫描量热法(DSC)、动态热机械分析(DMA)等测试手段考察了固化后树脂的热性能、力学性能、介电性能、耐湿热性及阻燃性能。结果表明:BDBPCy树脂结构中引入的联苯结构,使得树脂在固化后具有良好的热稳定性及自阻燃性能,800 °C的质量残留率为42%,玻璃化转变温度为258 °C,UL-94垂直燃烧实验测试结果为V-0级别。同时,结构中的大体积联苯基团和邻位甲基基团进一步提高了树脂的介电性能和耐湿热性能。  相似文献   

12.
以苯基三氯硅烷、3-氨基苯乙炔为原料,通过胺解反应合成了三(3-乙炔基苯胺)苯基硅烷(SZTA),并通过傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)表征了其结构。随后通过熔融共混的方法制备了不同配比的改性含硅芳炔树脂(PSA/SZTA),借助黏度计、流变仪、差示扫描量热仪(DSC)、电子万能试验机、热重分析仪(TG)等考察了改性树脂的工艺性能、固化特性、弯曲性能、热稳定性能和热解动力学等。结果显示,引入SZTA后,改性PSA树脂的黏度降低62%;改性PSA树脂固化物的弯曲强度最高达到34.6 MPa,比未改性的PSA树脂提高了约54%;且改性树脂固化物在N2中的5%热失重温度(Td5)均高于500 ℃,保持了良好的耐热性能;PSA/SZTA-20固化物的热解表观活化能(Ea)的平均值为249 kJ/mol。  相似文献   

13.
采用预共聚法,以含硅芳炔树脂(PSA)和端乙炔基聚醚酰亚胺(PEI)为原料,制备了端乙炔基聚醚酰亚胺改性的含硅芳炔(PEI-PSA)树脂及其与T300碳纤维平纹布的复合材料T300/PEI-PSA。通过动态热机械分析(DMA)和X射线能谱仪(EDS)研究了溶剂、溶液浓度、反应温度对预共聚反应的影响,确定了预共聚反应的最佳条件,得到了均匀分散的PEI-PSA树脂。通过红外光谱(FT-IR)、核磁共振氢谱(1H-NMR)、差示扫描量热(DSC)、热失重(TG)、DMA和EDS等表征了PEI、PEI-PSA树脂及T300/PEI-PSA复合材料的结构和性能。结果表明,当PEI质量分数为20%时,PEI-PSA树脂浇铸体的弯曲强度达44.5 MPa,较PSA树脂浇铸体提高了90.2%;T300/PEI-PSA复合材料的弯曲强度达602.7 MPa,较T300/PSA复合材料的弯曲强度提高了124%。  相似文献   

14.
采用氨基硅烷偶联剂对碳纤维进行表面改性,并以改性前后的碳纤维分别作为增强纤维,以尼龙66(PA66)树脂作为基体制成复合材料。采用X-射线衍射(XPS)、扫描电子显微镜(SEM)、动态机械性能分析(DMA)、力学性能测试等手段对复合材料界面的结构与性能进行了表征。研究了碳纤维表面改性对复合材料性能的影响,结果表明:碳纤维改性后表面活性官能团数增加,O-C=O和C=O的含量分别增加了95.24%和508.45%;碳纤维表面粗糙度增加,且与热塑性PA66树脂之间的结合强度显著增强;同时,改性后复合材料的的力学性能提升,弯曲强度和弯曲模量分别提升了30 MPa和424 MPa,冲击强度提高了6 MPa,储能模量显著增加,玻璃化转变温度提高约5℃。  相似文献   

15.
以四氯化锆、三氯乙烯及苯乙炔为原料,通过有机锂法合成锆炔杂化树脂(PZA),通过FT-IR、1H-NMR表征了其结构,利用FT-IR、DSC及TGA研究了PZA树脂的固化反应及耐热性能;采用XRD研究了PZA树脂固化物的烧结性能。结果表明:PZA树脂可以发生固化交联反应;其固化物具有一定的耐热性能,在氮气气氛中,失重10%的温度(Td10)达到500 °C,1 000 °C下的质量保留率达到80%;在空气气氛中,1 000 °C下烧结可形成四方氧化锆陶瓷。  相似文献   

16.
目的:研究碳纤维增强丙烯酸树脂的力学性能.方法:将碳纤维按体积分数分为60%、70%、75%,与丙烯酸树脂制成单向碳纤维增强复合材料,并测试其弯曲强度、弯曲模量和面内剪切强度.结果:随着碳纤维比例的提高,复合材料的弯曲强度明显增加(P<0.05),75%组达(1 385.14±97.07)MPa.75%组和70%组与60%组相比,弯曲模量提高明显,分别为(91.70±10.02)GPa、(83.26±8.56)GPa、(60.25±6.01)GPa(P<0.01);面内剪切强度降低非常显著,分别为(54.80±5.71)MPa、(53.01±5.27)MPa、(70.03±3.12)MPa(P<0.01).结论:碳纤维对丙烯酸树脂的弯曲性能具有增强作用,碳纤维含量以75%为好.  相似文献   

17.
用双酚A环氧树脂(E-44)改性脂环类环氧树脂(R-122),通过对改性R-122环氧树脂力学性能和热性能的测定,探讨了固化工艺,固化荆体系对改性R-122环氧树脂韧性的影响。结果表明:改性R-122环氧树脂冲击强度提高40%,弯曲强度提高75%,断裂能提高81%,而热变形温度和玻璃化转变温度基本不变。R-122树脂基复合材料随E-44的加入冲击强度和弯曲强度分别提高12%和18%。  相似文献   

18.
采用溶剂混合法制备了苯并噁嗪质量分数不同的苯并噁嗪改性氰酸酯树脂体系,采用差示扫描量热法(DSC)考察改性树脂的固化行为,采用密度法研究了改性树脂固化过程的收缩情况,考察了改性树脂的热稳定性和耐湿热性能等。结果表明:改性树脂体系的固化温度比氰酸酯树脂的固化温度至少降低25℃,具有自催化效果;苯并噁嗪开环聚合与氰酸酯发生环三嗪环的环三聚反应,改性树脂在固化过程中无收缩,固化物密度减小。改性树脂固化物的耐热性能略有下降,玻璃化转变温度(Tg)与起始分解温度(Td5)均下降20℃左右,1 000℃时热解残留率提高0.2%;改性树脂吸湿率低,其在沸水中放置72 h时吸湿率小于3%;改性树脂浇铸体弯曲强度达144.6 MPa,弯曲模量为4.44 GPa,经湿热老化后弯曲强度保留率达到63%,弯曲模量上升到4.62 GPa,具有良好的耐湿热性能。  相似文献   

19.
纳米载银无机抗菌剂对义齿基托树脂机械性能的影响   总被引:7,自引:0,他引:7  
目的研究纳米载银无机抗菌剂对义齿基托树脂机械性能的影响。方法纳米载银无机抗菌剂FUMAT T200-4,按0%(对照组)、1%、2%、3%、4%、5%、7%、10%(V/V)比例添加在加热固化型义齿基托树脂中,按相关国家标准检测各组的挠度、弯曲强度、弯曲弹性模量、冲击强度,分析比较抗菌剂添加比例对基托树脂机械性能的影响。结果纳米载银无机抗菌剂的添加使义齿基托树脂的机械性能产生一定程度的变化。除挠度无影响外,随抗菌剂添加比例上升,基托树脂冲击强度和弯曲强度下降,弯曲弹性模量上升。抗菌剂添加比例为1%,基托树脂冲击强度为(7.05±1.80)kJ/m2,较对照组的(10.01±1.86)kJ/m2明显下降;当抗菌剂添加比例达到4%,基托树脂的弯曲强度为(95.96±5.05)MPa,较对照组的(108.14±9.47)MPa明显下降;当添加比例达到5%,基托树脂的弯曲弹性模量为(2 594.00±40.21)MPa,较对照组(2 533.60±62.83)MPa明显上升。结论纳米载银无机抗菌剂的添加比例要根据需要合理控制,以减小对基托树脂机械性能的影响。  相似文献   

20.
目的 探讨经钛酸正丁酯(TTB)表面改性的纳米二氧化钛(TiO2)对义齿基托树脂机械性能的影响.方法 用TTB对纳米TiO2进行表面处理,采用X射线衍射、红外光谱对其进行表征.透射电镜观察纳米TiO2在MMA悬浮液中的分散情况,并考察义齿基托材料的弯曲强度、弯曲模量和冲击强度的变化.结果 TTB表面处理改善了纳米TiO2的分散性能,添加比为2%时复合材料的综合力学性能最好,其弯曲强度、弯曲模量和冲击强度分别为(86.274±5.053)MPa、(1.916±0.190)GPa和(4.009±0.279)J/cm2.结论 表面处理的纳米TiO2能提高义齿基托树脂的机械性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号