首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的检测贵安新区大学城某高校室内空气细菌总数和真菌总数,分析室内空气微生物污染情况,为制定相关措施控制校园室内微生物污染提供参考数据。方法采用自然沉降法对该高校5个代表性功能区(男生宿舍、女生宿舍、教室、图书馆和食堂)共计47个采样点进行室内空气细菌总数及真菌总数的采样及检测,并对检测结果进行卫生分级评价。结果该高校室内空气中细菌总数平均值为789 cfu/m~3,属清洁级,仅有3个采样点达污染级;空气中真菌总数平均值为167 cfu/m~3,属清洁级,未检测到有污染级的采样点。结论该高校公共场所室内空气微生物污染程度较低,属于清洁水平,但对学生宿舍、教室和食堂仍需采取有效措施改善室内空气卫生质量。  相似文献   

2.
某高校教室和学生宿舍空气细菌污染情况调查   总被引:2,自引:0,他引:2  
目的 研究高校教室和学生宿舍微生物污染情况,并初步分析其可能的影响因素.方法 于2007年4月-5月采用撞击式采样法对8间教室和20间宿舍进行空气细菌总数的采样测定.结果 教室空气细菌总数均符合卫生标准,简易教室空气细菌总数最高.学生宿舍空气细菌总数都符合卫生标准,但男生宿舍多于女生宿舍,差异有统计学意义(P<0.05).男生不同楼层宿舍和南、北朝向宿舍空气细菌总数差异均无统计学意义(P>0.05).结论 教室及学生宿舍室内空气质量基本合格,没有明显的细菌污染状况.  相似文献   

3.
校园室内空气微生物污染的调查   总被引:2,自引:0,他引:2  
目的 研究校园室内空气微生物的污染情况.方法 于2004年4-5月用柯赫沉降法,在早上、中午和晚上(早上6:30-7:30、中午11:30-12:30、晚上18:00-19:00)3个时间段,对聊城大学校园室内(学生宿舍、校园餐厅、校阅览室、校园网吧和校医院各设6、12、9、5、6个采样点)空气微生物(细菌、霉菌)进行采样,每个采样点重复采样3次.结果 校园室内空气细菌平均含量为2.39×103cfu/m3,空气质量为细菌较清洁水平.校园网吧空气细菌的含量较高(7.99×103 cfu/m3),达轻度污染水平.校园室内空气霉菌平均含量为0.62×103 cfu/m3,空气质量为霉菌较清洁水平.校园餐厅的空气霉菌含量较高(1.52×103 cfu/m3),达轻度污染水平.各采样地点不同时段空气细菌、霉菌含量比较,差异无统计学意义(P>0.05).结论 聊城大学校园室内空气质量为细菌、霉菌较清洁水平.  相似文献   

4.
目的 了解大学室内空气微生物污染变化情况,为学校卫生治理和疾病防控工作提供依据.方法 随机抽取河北大学医学部大学生宿舍40个、教室20个,依据《公共场所空气微生物检验方法菌落总数测定(GB/T 18204.1- 2000)》方法制备营养琼脂平板,采取自然沉降法对每个采样点按5点法采样,于(36±1)℃恒温箱中培养48 h,各监测点从8:00-20:00每2h监测1次,共7次.学生宿舍参照《居室内空气卫生细菌学评价》,教室参照《我国公共场所空气卫生细菌学标准》,确定≤30 cfu/皿为合格.结果 学生宿舍菌落总数中位数为28 cfu/皿,7次监测全部合格宿舍为8(20%)个;教室菌落总数中位数为24 cfu/皿,7次监测全部合格教室为5(25%)个.学生宿舍在8:00时菌落总数最高,12:00时最低,到20:00又逐渐升高;教室监测的情况正好与宿舍相反.结论 学生宿舍、教室空气的菌落总数及合格率不同时间之间存在差异.  相似文献   

5.
[目的]了解大学校园室内空气细菌污染状况,为制订提高教室卫生质量的措施提供科学依据。[方法]2010年10月,对青岛市某高等学校学生宿舍、食堂、教室和实验室,采用自然沉降法进行室内空气细菌总数检测。[结果]合计检测139个点,细菌总数合格的138个点,合格率为99.28%。细菌总数合格率,宿舍44个点为97.73%,教室50个点、食堂25个点、实验室20个点均为100.00%。空气质量分级,全部采样点为较清洁,其中学生宿舍为轻微污染,食堂为较清洁,教室、实验室为清洁。宿舍空气细菌总数(CFU/m3),男生宿舍为2 029±826,女生宿舍为3 008±1 868(P<0.05);1~5层分别为1 966±1 415、1 809±909、2 752±1 128、3 676±1 966、2 949±1 757(P<0.05)。[结论]某大学公共场所室内空气质量较清洁,但学生宿舍为轻微污染。  相似文献   

6.
校园空气微生物污染的监测与分析   总被引:4,自引:0,他引:4  
目的:了解校园空气微生物污染状况。方法:采用撞击法对校园168个采样点进行室内空气细菌总数检测。结果:校园室内存在一定程度的微生物污染,尤其是学生宿舍和教室内污染严重;春季细菌总数检测合格率79.6%,秋季合格率82.1%,但无显著性差异。结论:造成污染的可能因素有多种,需要采取综合防治措施。  相似文献   

7.
冬季通风对学生宿舍与教室微生物含量的影响   总被引:1,自引:0,他引:1  
为了解学生宿舍及教室空气中微生物污染状况,以及冬季自然通风可否明显减少室内细菌总数,我们于2004年12月对南京卫生学校的学生宿舍与教室进行了关窗、开窗及有无人的活动时细菌总数的测定。1采样方法选择学生宿舍楼30间朝阳宿舍,宿舍为22 m2/间、8人/间;教室分别选取阳面及阴  相似文献   

8.
目的了解校园四季空气中微生物含量变化趋势与污染情况。方法采用撞击式采样器,在人员负荷最重、活动最频繁时,对某大学校园空气中细菌粒子和霉菌粒子含量进行检测。结果校园空气微生物含量在季节间有很大不同,细菌含量在夏季最高,霉菌含量高峰在夏秋两季。细菌浓度比较高的功能区有道路、寝室、食堂、超市、体育馆、微机室和教室。可吸人霉菌粒子占霉菌粒子总数的比例高于细菌粒子。结论校园空气微生物含量在多种因素的综合影响下,季节间和不同功能区之间均表现出明显的差异,存在一过性污染情况。  相似文献   

9.
为了解轿车车内空气中微生物的污染状况,笔者于2011年5月和9月在广西师范大学校园内外选择正常行驶、车内空间相近、行驶年限为0.5~4年的16辆乘用车(轿车),于车辆静止状态下以自然沉降法监测细菌菌落总数、真菌菌落总数.于2011年5月和2011年9月各采样一次,每次采样时间在晴朗天气10:00左右.按照GB/T 17093-1997《室内空气中细菌总数卫生标准》进行评价,细菌菌落总数≤45 cfu/皿为合格.检测显示,车内空气细菌菌落总数超标率为31.6%(5/16).  相似文献   

10.
目的研究室内空气中PM_(2.5)污染状况,为室内人群暴露提供数据支持;方法 2013年5月-2014年4月,利用SKC采样泵采集样品,通过重量法计算空气中PM_(2.5)质量浓度。结果居室、学校室内、办公室室内空气中PM_(2.5)质量浓度未超过国家标准,I/O比值显示室内、室外空气中PM_(2.5)质量浓度相关。结论室内场所空气中PM_(2.5)质量浓度低于室外,在雾霾天气状况时室内空气PM_(2.5)质量浓度显著升高,应加强室外空气中PM_(2.5)控制。  相似文献   

11.
目的 了解校园空气中微生物分布及其变化规律。方法 采用空气沉降法,分别于春、夏、秋、冬四个季节对贵州大学校园8个不同功能区,共30个监测点进行了细菌含量的监测。结果 ⑴在室内监测点中,教学区空气质量全部合格,图书馆的空气质量是最佳的;女生宿舍、食堂的空气微生物含量相对较高。室外监测点中林荫道的空气质量在不同季节大部分时间均处于清洁水平,而主干道空气质量全年均处于污染水平。⑵校园各功能区中,室内空气微生物浓度明显低于室外,差异有统计学意义(P<0.05)。⑶校园各功能区不同季节空气细菌和真菌浓度变化特征存在差异。各季节不同功能区空气中细菌浓度无显著差异;而各季节空气中真菌浓度差异显著,真菌浓度在秋季最高,冬季最低。结论 在人流量大的、空间相对密闭、植被稀少的场所空气中的微生物污染较严重,相反在人流量小、通风好、植被茂密的场所微生物污染少,空气质量较好。  相似文献   

12.
目的 分析北京一次空气重污染黄色预警期间室内外微生物气溶胶的浓度和粒径变化特征及相关影响因素。方法 采用Andersen空气微生物采样器在北京市空气重污染黄色预警期间对室内外环境进行采样、培养,同时记录采样时的环境因素、颗粒物以及气态污染物的浓度。结果 在本次北京市空气重污染期间室外细菌和真菌气溶胶浓度显著高于室内细菌和真菌气溶胶浓度(P<0.01),室内外细菌和真菌浓度变化趋势具有显著正相关(P<0.01),发现63.62%~96.70%的细菌或真菌气溶胶粒子直径小于5μm,Spearman相关分析表明室外细菌气溶胶浓度与温度具有显著正相关(P<0.01),与相对湿度具有显著负相关(P<0.01),室内细菌气溶胶浓度与温度和相对湿度具有显著正相关(P<0.01),室外真菌气溶胶浓度与SO2、PM10、PM2.5和AQI指数具有显著正相关(P<0.01),与相对湿度具有显著负相关,室内真菌气溶胶浓度与温度、SO2、PM10、PM2.5和AQI指数具有显著正相关(P<0.01),与O3浓度具有显著负相关(P<0.01)。结论 本次空气重污染预警期间,室外微生物气溶胶浓度显著高于室内,超过60%的室外或室内微生物气溶胶粒子直径小于5μm,室内外微生物气溶胶浓度受多个环境因素参数影响。  相似文献   

13.
探讨室外环境与室内人员活动/行为对大学生公寓内细颗粒物PM2.5污染的影响,为保护大学生身体健康提供科学依据.方法 对北京市大兴区某高校校园9间大学生公寓室内外PM2.5浓度实时连续监测7d,同时对大学生的时间一行为活动模式进行问卷调查.结果 公寓是大学生最主要的室内活动场所,每天在公寓内的时间为13.30h,占55.4%.公寓内PM2.5日均体积质量比范围为39.3 ~ 584.1μg/m3,超标率为66.7%~85.7%;室外PM2.5日均体积质量比范围为76.5~493.2 μg/m3,超标率为100%;室内外日均PM2.5体积质量比I/O比均值为0.84.相关分析结果表明,公寓内PM2.5浓度与室外浓度、室内外温差、室外相对湿度、风速的相关均有统计学意义(r值分别为0.792,-0.535,0.634,-0.547,P值均<0.01).公寓内人员活动/行为影响室内PM2.5浓度和I/O比(P值均<0.05).结论 在室外环境条件和室内人员的综合影响下,大学生公寓内PM2.5污染严重.应采取适当措施降低大学生公寓内PM2.5暴露水平.  相似文献   

14.
Children spend most of their time inside schools and bioaerosol particles are part of their everyday environment. Although bioaerosol particles are considered to be a potential risk factor for various health concerns, information concerning the indoor exposures and inhalation doses is still limited. This study aimed (i) to quantify bacterial and fungal particles levels in indoor and outdoor air of public primary schools, (ii) to assess the influence of ambient air on bacteria and fungi presence indoors, and (iii) to estimate the inhalation dose rates for respective children (8–10 years old) in comparison with adult staff. Air samples were collected in 20 primary schools in a total of 71 classrooms during heating season with a microbiological air sampler. The results showed that indoor bacterial and fungal concentrations were higher than outdoor levels (p?<?0.05), which could be explained by differences in density of occupation, occupant’s activities, and inadequate ventilation. CO2 levels were significantly correlated with indoor bacteria concentrations. Moreover, mean indoor bacteria concentrations were above national limit values in all the evaluated Porto primary schools, from two to nine times higher. Regarding fungi concentrations, indoor levels were above the reference value in 75% of the schools and overall indoor levels registered a 3-fold increase compared with outdoor values. Children had two times higher inhalation dose rates to bioaerosol particles when compared to adult individuals. Thus, due to their susceptibility, special attention should be given to educational settings in order to guarantee the children healthy development.  相似文献   

15.
Indoor and outdoor concentrations of formaldehyde (HCHO), nitrogen dioxide (NO2), and selected chlorinated volatile organic compounds (chlorinated VOC) were measured in 37 urban dwellings in Nagoya, Japan, and 27 urban dwellings in Uppsala, Sweden, using the same sampling procedures and analytical methods. Indoor as well as outdoor air concentrations of HCHO, NO2, and chlorinated VOC were significantly higher in Nagoya than in Uppsala (P<0.01), with the exception of tetrachlorocarbon in outdoor air. In Nagoya, HCHO and NO2 concentrations were significantly higher in modern concrete houses than in wooden houses and higher in newer (less than 10 years) than in older dwellings (P<0.01), possibly due to less natural ventilation and more emission sources in modern buildings. Dwellings heated with unvented combustion sources had significantly higher indoor concentrations of NO2 than those with clean heating (P<0.05). Moreover, dwellings with moth repellents containing p-dichlorobenzene had significantly higher indoor concentrations of p-dichlorobenzene (P<0.01). In conclusion, there appear to be differences between Nagoya and Uppsala with respect to both indoor and outdoor pollution levels of the measured pollutants. More indoor pollution sources could be identified in Nagoya than in Uppsala, including construction and interior materials emitting VOC, use of unvented combustion space heaters, and moth repellents containing p-dichlorobenzene.  相似文献   

16.
Fungi cause allergies and many other adverse health effects. In this study, we characterized the nature and seasonal variation of fungi inside and outside homes in the Greater New Haven, Connecticut area. Three indoor air samples (in the living room, bedroom, and basement) and one outdoor sample were collected by the Burkard portable air sampler. House dust samples were collected in the living room by a vacuum cleaner. The mold concentrations varied widely from house to house in both indoor and outdoor air. No significant difference (p>0.05) in concentration and type of fungi between living room and bedroom or by season was observed. Both concentration and type of fungi were significantly higher (p<0.05) in the basement than other indoor areas and outdoor air in winter. The type of fungi in living room, bedroom, and outdoor air were found to have significant changes among seasons, but there was no significant difference for the basement among seasons. Cladosporium spp. was dominant in both indoor and outdoor air in summer. Penicillium and Aspergillus were dominant in indoor air in winter, but neither was dominant in any season in outdoor air. The type of fungi and their concentrations in house dust samples were not representative of those isolated in indoor air. In dust samples, more Mucor, Wallemia, and Alternaria species, but less Aspergillus, Cladosporium, and Penicillium species were found in all seasons. Air sampling in spring or fall in every suspected house is suggested for year-round fungal exposure assessment.  相似文献   

17.
This study was undertaken to determine the normal indoor and outdoor airborne culturable fungal constituents and concentrations of an arid environment. Air samples were taken with two-stage, ambient, culturable sampler systems and analyzed for nine specific fungal genera from 50 homes as a repeated measure during each season of the year. These homes had no previous histories of indoor air quality issues. This study detected seasonal differences for the arid environment between different culturable fungal concentrations across the two size ranges. The highest concentrations were during fall, in the outdoor fine-size range. The lowest concentrations were the indoor coarse concentrations in the spring. From this study it can be concluded that Cladosporium spp. had the highest concentrations during fall in an arid environment. The overall findings suggest that Cladosporium had concentrations greater than the other genera evaluated, specifically, the fall outdoor fine concentrations. Seasonality was found to be a key factor in determining the variability of fungal constituents and concentrations within the arid indoor and outdoor environments. The fine-size range was 12 times and 6 times greater than the coarse-size range for indoor and outdoor samples, respectively, which accounted for the majority of fungal organisms. In addition, the results from this study in an arid climate differ from those conducted in a moister climate.  相似文献   

18.
目的 了解上海市地铁车站室内空气中微生物分布状况。 方法 对地铁车站站台环境和室外环境中的细菌、真菌进行采样检测,并对数据进行统计学分析。 结果 车站内细菌菌落数低于室外对照点,真菌菌落数则高于室外,差异均有统计学意义(P<0.05)。地铁车站内颗粒粒径在4.70 μm以上的微生物数量低于室外对照点,差异有统计学意义(P<0.05)。地铁车站空气中微生物主要附着于0.65~4.70 μm粒径的颗粒物上。 结论 由于5.00 μm以下的颗粒可以进入到人体下呼吸道,富含致病微生物的颗粒物会对人体健康带来危害。地铁车站内粒径在5.00 μm以下的微生物气溶胶应成为重点监控对象。  相似文献   

19.
This study attempted to evaluate the bioaerosol exposure of apartment residents at high-rise apartment buildings in a Korean city. The characteristics associated with the bioaerosol exposure included the apartment floor, seasonal variation, summer survey period (seasonal rain-front period (SRFP) or no rain-front period (NRFP)), and room location inside an apartment. Four most prevalent fungal genera detected in both the indoor and the outdoor air were Cladosporium, Penicillium, Aspergillus, and Alternaria. The outdoor bacterial concentrations were significantly higher in the low-floor apartments than in the high-floor apartments. However, the bacterial and fungal concentrations in the interior air of the apartments were not significantly different between the low- and the high-floor apartments. The current bioaerosol concentrations were comparable to those in other reports, with geometric mean (GM) bacterial values between 10 and 10(3) CFU m(-3) and fungal aerosol concentrations in homes ranging also from 10 to 10(3) CFU m(-3). The indoor and outdoor fungal concentrations and the outdoor bacterial concentrations were usually higher in the summer than in the winter. The indoor and outdoor bioaerosol concentrations were both higher for the SRFP than for the NRFP. The difference in the total bacterial concentrations was not significant among the surveyed five rooms. The GM total fungal and Cladosporium concentrations, however, were significantly higher for the kitchen than for the other rooms.  相似文献   

20.
[目的]通过监测广州市内外勤交警执勤区域大气污染物浓度,初步研究内外勤交警执勤期间大气污染物的暴露特征和水平,为机动车尾气高暴露人群的生物效应评价技术研究提供现场调查数据。[方法]应用电子分析仪监测广州市内外勤交警执勤区域及内勤交警工作的岑村交警大楼的二氧化氮(NO2)、一氧化碳(CO)、可吸入颗粒物(PM10)、二氧化硫(SO2)等污染物的浓度,计算相关空气质量评价指数。[结果]外勤交警执勤期间暴露的NO2、CO、PM10、SO2的平均浓度分别为(0.34±0.17)、(1.93±2.97)、(0.10±0.05)、(0.49±1.54)mg/m3,大气质量为Ⅴ级,属重污染,NO2和SO2为主要污染物;内勤交警执勤期间暴露的NO2、CO、PM10、SO2的平均浓度分别为(0.08±0.05)、(0.22±0.26)、(0.05±0.05)、(0.02±0.02)mg/m3,大气污染物浓度低于外勤交警(P〈0.01),大气质量为Ⅱ级,尚清洁,NO2和PM10为主要污染物。[结论]广州市外勤交警执勤期间暴露的主要气态污染物浓度超标,其中以NO2的超标情况最严重,属中重度污染,符合混合型污染的特征;内勤交警大气污染物的暴露浓度低于外勤交警。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号