首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
单层与多层螺旋CT所致儿童受检者辐射剂量研究   总被引:2,自引:1,他引:1       下载免费PDF全文
目的 研究和评价儿童受检者在单层与多层螺旋CT扫描中所受到的辐射剂量。方法 测试21台CT机的头部和体部剂量指数,并结合0~1岁组、5岁组、10岁组儿童和成年人的头部和胸部常规扫描条件,计算CTDIw、CTDIvol、DLP值,再由DLP与有效剂量转换系数计算头部和胸部常规扫描所致各年龄组儿童和成年人的有效剂量。 结果 单位mAs的头部CTDI大于体部CTDI;在头部常规扫描中,0~1岁组、5岁组、10岁组儿童受到的有效剂量分别为2.2、1.3、1.1 mSv;在胸部常规扫描中,0~1岁组、5岁组、10岁组儿童受到的有效剂量分别为5.3、3.1、3.4 mSv;每单位mAs所致儿童有效剂量平均比成人高1.8倍;多层CT的儿童头部CTDIvol、DLP、有效剂量值均大于单层与双层CT,多层与双层CT的儿童胸部CTDIvol、DLP、有效剂量值均小于单层CT。 结论 与成年人相比,儿童在CT检查中可能受到更大辐射危害,应严格遵循儿童CT检查适应证,并合理选择CT扫描参数,尽可能降低儿童受到的辐射剂量。  相似文献   

2.
目的 使用常规辐射剂量评估参数与体型特异性剂量估计方法比较不同年龄段儿童和成人肺部CT扫描时所受辐射剂量的差异。方法 回顾性连续抽样华中科技大学同济医学院附属协和医院2017年1月至2018年7月肺部CT扫描患者,共406例,按照年龄分为6组(0~2岁、3~6岁、7~10岁、11~14岁、15~18岁、18岁以上)。基于MATLAB平台开发的dicom数据处理软件,抽取每例患者的容积CT剂量指数(CTDIvol)值、剂量长度乘积(DLP)值,同时根据美国医学物理师学会(AAPM)220报告提出的体型特异性剂量估计(SSDE)方法,计算每例患者的水当量直径Dw及SSDE值。分析分别使用两种方法时,不同年龄段儿童和成人肺部CT扫描时所受辐射剂量的差异。结果 各年龄组CTDIvol值均显著低于SSDE值,差异有统计学意义(t=-36.36、-32.83、-30.36、-28.74、-23.89,P<0.05),不同年龄组SSDE值较CTDIvol值分别增加137%、94%、79%、57%、42%。成人组的CTDIvol值同样低于SSDE值,差异有统计学意义(t=-21.92,P<0.05),SSDE值较CTDIvol值增加41%。随着年龄的升高,各年龄组儿童患者CTDIvol值、DLP值、Dw值、SSDE值逐渐升高,并均明显小于成人组,差异有统计学意义(F=63.39、203.28、89.27、103.44,P<0.05)。各年龄组的转换系数f随着年龄的增加显著降低,均明显高于成人组,差异有统计学意义(F=109.83,P<0.05)。结论 在肺部扫描中,相比于成人,CTDIvol会严重地低估儿童所受的辐射剂量,年龄越小的患者,被低估得越严重,而SSDE方法考虑到受检者体型差异,能够更准确地反映不同患者所受的辐射剂量。  相似文献   

3.
目的 通过改变扫描位置优化下颌骨CT扫描方法降低辐射剂量.方法 50例下颌骨CT扫描的连续病例纳入本前瞻性对照研究,用随机数字表法分2组,各25例.分别进行体位优化法和常规法扫描,比较其图像质量、CT 剂量加权指数(CTDIvol)、扫描范围长度(L)及剂量长度乘积(DLP).结果 体位优化法与常规法的下颌骨图像质量相同,两组的CTDIvol 无明显差异,体位优化法扫描范围长度(L)和剂量长度乘积(DLP) 比常规法分别下降20%(t=4.986, P<0.05) 和16%(t=3.682, P<0.05),并避开了晶状体.结论 体位优化法下颌骨扫描能有效减少扫描长度和避开晶状体,降低有效辐射剂量.  相似文献   

4.
目的 探讨容积CT剂量指数(CTDIvol)与体型特异性剂量估算(SSDE)两种辐射剂量估算方法在评估成人胸部CT扫描辐射剂量中的应用价值。方法 回顾性分析2017年3月至4月浙江中医药大学附属第一医院128例进行胸部CT平扫且所有图像均能满足诊断要求的受检者的CTDIvol与SSDE。将受检者按照不同体质量指数(BMI)分为3组:A组,16 ≤ BMI<21.1 kg/m2,38例;B组,21.1 ≤ BMI<23.9 kg/m2,53例;C组,23.9 ≤ BMI<34.1 kg/m2,37例。在两乳头层面测量每例受检者的前后径(AP)、左右径(LAT),记录每例受检者的CTDIvol值,计算每例受检者的有效直径(ED)、转换因子(fsize)和SSDE。同时,比较不同体质量指数组CTDIvol与SSDE之间的差异。结果 3组受检者的SSDE均高于CTDIvol,A、B、C组分别增加了50.13%、42.83%、33.68%。CTDIvol和SSDE估算方法3组辐射剂量比较差异均有统计学意义(t=-48.873、-57.001、-32.651,P<0.05)。3组受检者间的EDfsize、CTDIvol和SSDE差异均有统计学意义(F=51.456、47.749、113.916、106.449,P<0.05)。结论 SSDE能够评估不同体型的受检者在胸部CT扫描中所受到的辐射剂量,而CTDIvol过低地估计了受检者受到的辐射剂量,且BMI越小的受检者被低估的剂量值越大,实际受到的辐射剂量越多。  相似文献   

5.
目的 比较容积CT剂量指数(CTDIvol)及体型特异性剂量估算(SSDE)在估算腹部CT扫描时患者所受辐射剂量的差异。方法 采用Philips 256螺旋CT扫描仪对180例患者进行上腹部CT增强扫描,在左肾静脉主干层面测量每位患者的左右径(LAT)、前后径(AP),计算有效直径(ED),同时记录每位被检者的CTDIvol值及体模的扫描直径,计算SSDE。将患者按照体重指数(BMI)分为3组:A组,BMI<20 kg/m2;B组,BMI介于20~24.9 kg/m2之间;C组,BMI>24.9 kg/m2。分别比较180例被检者及不同体重指数组CTDIvol与SSDE之间的差异。结果 180例被检者CTDIvol和SSDE分别为(9.91±2.91)和(14.01±2.82)mGy,差异有统计学意义(t=-13.354,P=0.000)。A组CTDIvol和SSDE分别为(7.96±1.83)和(12.83±2.52)mGy ( t=-8.417,P =0.000);B组分别为(9.28±1.76)和(13.62±2.18)mGy(t=-15.051,P=0.000);C组分别为(12.19±3.65)和(15.39±3.47)mGy(t=-4.535,P=0.000)。此外,3组SSDE分别较CTDIvol平均增加了62.83%、 47.80%和28.40%,即CTDIvol过低估算被检者的辐射剂量,且随着体重指数的增加,CTDIvol与SSDE之间的差值越小。结论 SSDE能够反映特定体型的被检者进行腹部CT扫描时所接受的辐射剂量。  相似文献   

6.
目的 比较容积CT剂量指数(CTDIvol)及体型特异性剂量评估(SSDE)在估算腹部CT扫描时患者所受辐射剂量的差异。方法 采用Philips 256螺旋CT扫描仪对180例患者进行上腹部CT增强扫描,在左肾静脉主干层面测量每例患者的左右径(LAT)、前后径(AP),计算有效直径(ED),同时记录每例被检者的CTDIvol值及体模的扫描直径,计算SSDE。将患者按照体质量指数(BMI)分为3组:A组,BMI<20.0 kg/m2;B组,BMI介于20.0~24.9 kg/m2之间;C组,BMI>24.9 kg/m2。分别比较180例被检者及不同体质量指数组CTDIvol与SSDE之间的差异。结果180例被检者CTDIvol和SSDE分别为(9.91±2.91)和(14.01±2.82)mGy,差异有统计学意义(t=-13.354, P<0.01)。A组CTDIvol和SSDE分别为(7.96±1.83)和(12.83±2.52)mGy (t=-8.417, P<0.01);B组分别为(9.28±1.76)和(13.62±2.18)mGy(t=-15.051,P<0.01);C组分别为(12.19±3.65)和(15.39±3.47)mGy(t=-4.535,P<0.01)。此外,3组SSDE分别较CTDIvol平均增加了62.83%、 47.80%和28.40%,即CTDIvol过低估算被检者的辐射剂量,且随着体质量指数的增加,CTDIvol与SSDE之间的差值越小。结论 SSDE能够反映特定体型的被检者进行腹部CT扫描时所接受的辐射剂量。  相似文献   

7.
目的 探讨自动管电流调制模式下行头颈部和胸部CT扫描时,管电压的改变对辐射剂量及影像质量的影响。方法 自动管电流和自动管电压模式下,对头颈部和胸部模体进行常规CT扫描。自动管电流模式下,管电压分别手动选择70、80、100、120和140 kV,对头颈部和胸部模体进行常规CT扫描。每种管电压下定位像扫描3次,再进行1次螺旋扫描。头颈部模体在眼眶中心及第5颈椎(C5)椎体上缘层面选取感兴趣区(ROI),胸部模体在肺尖及气管分叉层面选取ROI,测量记录对比噪声比(CNR)。用热释光剂量计(TLD)测量每次扫描时眼晶状体和乳腺的器官剂量(取3次测量的平均值),计算定位像和螺旋扫描的累积值。记录每次扫描的容积CT剂量指数(CTDIvol),并计算CTDIvol累积值。最后通过计算品质因数(FOM),找到最优化的管电压值。结果 自动管电流和自动管电压模式时,头颈部自动选择120 kV和108 mAs,胸部自动选择80 kV和167 mAs。自动管电流模式时,手动选择70 kV时眼晶状体辐射剂量和CTDIvol值最小(分别为0.779和4.070 mGy),140 kV时眼晶状体辐射剂量和CTDIvol值最大(分别为2.571和25.670 mGy)。70 kV时乳腺辐射剂量和CTDIvol值最小(分别为0.698和0.900 mGy),140 kV时乳腺辐射剂量和CTDIvol值最大(分别为3.452和7.400 mGy)。CNR值在眼眶和C5椎体上缘层面分别为51.30~118.36和80.78~173.12,在肺尖和气管分叉层面分别为50.15~129.58和49.63~115.40。FOM因子在眼眶层面80 kV最大,在C5椎体上缘层面120 kV最大,在肺尖和气管分叉层面都是70 kV最大。头颈部模体最佳管电压:眼眶层面手动100 kV,颈部层面自动管电压模式(120 kV)。胸部模体最佳管电压:手动100 kV。结论 管电压的选择对CT扫描的辐射剂量和影像质量影响较大。对于常规CT扫描,手动100 kV适合眼眶区域扫描,自动120 kV适合颈部区域扫描,手动100 kV适合胸部扫描。  相似文献   

8.
目的 探讨适合儿童埋伏牙多层螺旋CT(MSCT)检查的低剂量曝光条件。方法 80例经16层螺旋CT检查出埋伏牙的患儿,按曝光量不同分为5、25、125及250mAs4组,由放射科2名正主任医师及3名副主任医师采用双盲法评价图像质量,并记录不同毫安秒扫描时的加权CT剂量指数(CTDIw)、剂量长度乘积(DLP),使用SAS9.1统计分析系统进行统计学处理。结果 4组的扫描图像均能准确显示埋伏牙结构及其相邻关系。5mAs扫描组在牙槽突骨小梁及牙龈等周围软组织的分辨能力较25、125及250mAs组下降,但仍能满足诊断要求。5mAs组CTDIw值及DLP值仅为250mAs组的2%。结论 5mAs的MSCT低剂量扫描可以满足儿童埋伏牙诊断需要,减少了患儿接受的辐射剂量。  相似文献   

9.
北京市放射诊断受检者剂量调查与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 探讨北京地区放射诊断检查对成年受检者的辐射剂量水平。方法 选取北京市城区与远郊共10个区域的30家不同级别医疗机构,以1 182例X射线摄影、542例乳腺摄影和410例CT检查为研究对象,测读不同投照部位下照射野内受检者/模体所受的辐射剂量。结果 普通X射线摄影、CR摄影和DR摄影受检者剂量范围分别为0.4~24.1、0.3~13.9、0.1~15.9 mGy;乳腺受检者乳腺腺体平均剂量为0.3~5.4 mGy;CT受检者CTDIw值为28.1~96.3 mGy、CTDIvol值为7.0~23.4 mGy、DLP值为162.2~898.1 mGy ·cm。结论 个别放射诊断检查受检者所受辐射剂量高于国标中医疗照射指导水平值,应引起注意。  相似文献   

10.
目的 探讨80 kVp管电压及碘克沙醇(270 mg I/ml)条件下,采用滤波反投影(FBP)算法重建图像行CT肺动脉成像(CTPA)检查的可行性。方法 前瞻性收集52例行CTPA检查的患者,根据CT扫描管电压和对比剂不同,将患者平均分为对照组和试验组。记录两组的CT容积剂量指数(CTDIvol)和剂量长度乘积(DLP),并计算出加权剂量指数(CTDIw)和有效剂量(E)。对图像质量进行目测评分、测量及其辐射剂量进行统计学处理。结果 两组患者的性别比、年龄、身高、体重及体质量指数(BMI)差异均无统计学意义(P>0.05)。与对照组相比,试验组用碘量降低了22.9%;试验组CTDIvol、DLP、CTDIwE分别降低了73.5%、75.1%、73.5%和75.8%(t=<0.001、30.5、<0.001、-28.7,P<0.05);两组图像均符合诊断要求,图像质量目测评价和测量结果差异均无统计学意义(P>0.05)。结论 使用80 kVp管电压和碘克沙醇行CTPA检查时,FBP重建图像质量可以满足诊断需要,同时能降低辐射剂量和对比剂用量,减少X射线管损耗。  相似文献   

11.
基于辐射剂量结构化报告的CT辐射剂量分析   总被引:2,自引:2,他引:0       下载免费PDF全文
目的:应用医学数字成像和通信( DICOM )标准定义的辐射剂量结构化报告( RDSR),实现CT检查的辐射剂量统计分析。方法利用自行设计的软件,通过检索影像归档和通信系统( PACS),获取1230份CT检查的RDSR文件。将相关信息提取后,结合扫描部位建立患者剂量数据库。根据年龄将患者分为成年组(10岁以上)及儿童组(0~1岁,1~5岁,5~10岁),分别统计各扫描部位的平均容积CT剂量指数( CTDIvol )、剂量长度乘积( DLP),估算有效剂量( E);并计算75%分位DLP值,与诊断学参考水平( DRL)相比较。结果成年患者组,CTDIvol与DLP值呈中度正相关(r=0?41),上腹部增强扫描的E最高,其75%分位DLP值超过DRL60%;儿童5~10岁组的CTDIvol高于0~1岁与1~5岁组(t=2?42、2?04,P<0?05), DLP值与年龄呈低度正相关(r=0?16),E与年龄呈中度负相关(r=-0?48)。结论应用RDSR获得患者辐射剂量是一种简单、高效的方法。随着新设备的普及与区域化医疗平台的应用,RDSR将成为剂量学水平调查及个人剂量记录的主要工具。  相似文献   

12.

Objective

The dosimetric calculations in CT examinations are currently based on two quantities: the volume weighted CT dose index (CTDIvol) and the dose–length product (DLP). The first quantity is dependent on the exposure factors, scan field of view, collimation and pitch factor selections, whereas the second is additionally dependent on the scan length.

Methods

In this study a method for the calculation of these quantities from digital imaging and communication in medicine (DICOM) CT images is presented that allows an objective audit of patient doses. This method was based on software that has been developed to enable the automatic extraction of the DICOM header information of each image (relating to the parameters that affect the aforementioned quantities) into a spreadsheet with embedded functions for calculating the contribution of each image to the CTDIvol and DLP values. The applicability and accuracy of this method was investigated using data from actual examinations carried out in three different multislice CT scanners. These examinations have been performed with the automatic exposure control systems activated, and therefore the tube current and tube loading values varied during the scans.

Results

The calculated DLP values were in good agreement (±5%) with the displayed values. The calculated average CDTIvol values were in similar agreement with the displayed CTDIvol values but only for two of the three scanners. In the other scanner the displayed CTDIvol values were found to be overestimated by about 25%. As an additional application of this method the differences among the tube modulation techniques used by the three CT scanners were investigated.

Conclusion

This method is a useful tool for radiation dose surveys.CT has greatly evolved since it was first introduced into clinical practice. The technological innovations in CT scanner hardware and software have led to the introduction of many new clinical applications of CT in diagnosis and therapy (CT-guided interventions), making CT the examination technique with the largest contribution to the cumulative patient doses from radiographic examinations [1].From the time of its establishment, CT was considered as a relatively high-dose imaging technique [2]. For this reason, the calculation of patient dose has been for many years a subject of research. Special dosimetric quantities (see Appendix A), protocols and dedicated software have been designed for this purpose, and many scientific papers concerning patient doses from CT examinations have been published in the international literature. Currently the quantity that is being used as an indicator of patient dose from CT examinations is the dose–length product (DLP). The effective dose can be calculated from the DLP using conversion coefficients that have been proposed for specific routine examinations or by using special software [2, 3].Modern multislice CT (MSCT) scanners offer a direct display of the volume-weighted CT dose index (CTDIvol) and the DLP [4]. In older CT scanners where no direct display was available, these quantities could only be calculated retrospectively provided that the technical parameters of the examination (such as the tube potential, tube current, exposure time, scan field of view, pitch and scan length) were known. In examinations where the acquisition parameters were constant throughout the scan, the technical parameters could be derived from any one of the images and the scanned length could be deduced from the table position indication of the first and last image provided that a hard or a soft copy of the examination was available. The same procedure is also applicable in the case of MSCT scanners and can be used to verify the accuracy of the DLP values displayed. However, in the case of helical scanning it must also be taken into account that because of the overscan the scanned length is always larger than that planned [1, 2, 5]. Owing to the overscan, the displayed DLP values should always be greater than those calculated using the planned scan length.However, for CT examinations performed using automatic exposure control systems, the retrospective calculation of DLP is difficult and time-consuming, since the tube current continuously changes during the scan [1, 2, 4, 6]. The same applies for interventional CT-guided procedures, where a quite large number of series are usually acquired at different anatomical positions and with different technical parameters each time, making the calculation of DLP a very cumbersome task [7].In this study an automated method for the calculation of the DLP from DICOM CT images is presented, whose purpose is to allow the objective audit of patient CT doses (in terms of DLP) using information from the DICOM header. This method was based on software that was developed to enable the automatic extraction of the DICOM header information of each image into a spreadsheet containing calculation algorithms. The applicability and accuracy of this method was investigated using data from actual examinations carried out in three different MSCT scanners.  相似文献   

13.
《Radiography》2023,29(2):334-339
IntroductionThe aim of this study was to compare the output dose (volume CT dose index [ CTDIvol], and dose length product [DLP]) of automatic tube current modulation (ATCM) determined by localizer radiographs obtained in the anteroposterior (AP) and posteroanterior (PA) directions.MethodsOne hundred and twenty-four patients who underwent upper abdomen and/or chest–to–pelvis computed tomography (CT) were included. Patients underwent two series of CT examinations, and localizer radiographs were obtained in the AP and PA directions. The horizontal diameter of the localizer radiograph, scan length, CTDIvol, and DLP were measured.ResultsThere was no significant difference in the scan length; however, all the other values were significantly higher in the PA direction. The mean horizontal diameter was 33.1 ± 2.6 cm and 35.4 ± 2.9 cm in the AP and PA directions of the localizer radiographs, respectively. The CTDIvol and DLP in the PA direction increased by approximately 7–8%.Bland-Altman plots between AP and PA localizer directions in upper abdominal CT showed a positive bias of 1.1 mGy and 30.0 mGy cm for CTDIvol and DLP, respectively. Correspondingly, chest–to–pelvic CT showed a positive bias of 0.93 mGy and 69.3 mGy cm for CTDIvol and DLP, respectively.ConclusionThe output dose of ATCM determined by localizer radiographs obtained in the PA direction was increased compared to the AP direction. Localizer radiographs obtained in the AP direction should be preferred for optimizing the output dose using ATCM.Implications for practiceBased on the evidence of this study, localizer radiographs obtained in the AP direction should be preferred for optimizing the output dose in CT examinations.  相似文献   

14.
目的探讨不同CT扫描条件下人工智能(AI)系统对胸部模体内实性结节检出效率与辐射剂量的影响。方法于仿真胸部拟人模体内各肺叶和肺段均匀放置不同CT值和直径的60颗不同形态的仿真结节。应用GE Revolution evo CT对胸部模体进行扫描, 通过调节管电压80、100、120和140 kV, 噪声指数(NI 10~40, 间隔2), 其他参数固定, 采集64组不同参数图像。在AI软件上记录仿真结节检出情况并计算检出率与误检率, 不同形态结节分别计算;记录每次扫描平均容积CT剂量指数(CTDIvol)、剂量长度乘积(DLP)。结果不同管电压对类球形结节和不规则结节的检出率、误检率差异均无统计学意义(P>0.05);不同噪声指数对类球形结节和不规则结节的检出率、误检率差异均存在统计学意义(F=10.57、17.77、9.33, P<0.001)。不同管电压对CTDIvol、DLP差异无统计学意义(P>0.05), 不同噪声指数对CTDIvol、DLP差异具有统计学意义(F=59.87、60.92, P<0.001)。结节的检出率与噪声指数、CTDIvol、DLP...  相似文献   

15.
目的通过对上海市儿童CT扫描受检者剂量参数的调查, 探讨上海地区儿童CT扫描剂量分布情况, 并为建立上海地区儿童受检者CT检查诊断参考水平提供依据。方法 2021年在上海地区全部4家儿童医院开展儿童头颅、胸部、腹部CT扫描受检者剂量普查, 调查对象按年龄0~、1~、5~、10~15岁分为4个年龄组, 每个年龄组调查30例, 收集受检者基本信息、CT扫描参数、容积CT剂量指数(CTDIvol)和剂量长度乘积(DLP)等剂量指标, 分析同一部位不同年龄组之间和同一部位同一年龄组不同医院之间CTDIvol、DLP的差异。结果头颅CT扫描时, 0~、1~、5~、10~15岁组儿童CTDIvol和DLP的75%位数分别为25、25、28、43 mGy和402、477、504、752 mGy·cm;胸部CT扫描时, 0~、1~、5~、10~15岁组儿童CTDIvol和DLP的75%位数分别为2.7、2.2、2.8、5.4 mGy和40、48、75、176 mGy·cm;腹部CT扫描时, 0~、1~、5~、10~15岁组儿童CTDIvol和DLP的75%位数分别为4.9、4.4、8.2、12 mGy...  相似文献   

16.
目的统计以容积CT剂量指数(CTDI_(vol))、基于水当量直径(WD)的体型特异性剂量估算值(SSDEWD)及剂量长度乘积(DLP)为衡量指标的儿童头颅、胸部及腹盆部CT检查诊断参考水平(DRL)典型值,衡量本医疗机构CT检查辐射水平。方法回顾性收集2021年1月至2021年12月间南京医科大学附属儿童医院收治的头颅1391例,胸部1386例及腹盆部1035例患者CT影像资料,分别记录其年龄、CTDI_(vol)、DLP,手动测量最中间扫描图像的前后径(AP)、左右径(LAT)、兴趣区面积(AROI)及面积内CT值(CTROI),按照美国医学物理学家学会(AAPM)报告方法,计算有效直径(d)、WD、转换因子(f16/32XSIZE)及SSDEWD;将各检查部位分别按照年龄及体型进行分组:按照年龄分为<1、1~、5~、10~、15~岁5组,各分组患儿数分别为:头颅252、320、400、380及39例;胸部188、320、399、398及81例;腹盆部75、310、310、300及40例。头颅基于LAT分为<12.5、12.5~、14~、15~、16~cm 5组,每组患儿分别为151、222、319、399及300例;胸部、腹盆部基于d分为<15、15~、20~、25~、30~cm 5组,每组患儿分别为胸部275、527、400、165及19例;腹盆部403、410、184、34及4例。统计各分组内CTDI_(vol)、SSDEWD和DLP的第75百分位数,将其作为DRL典型值;并比较CTDI_(vol)和SSDEWD在衡量辐射剂量上的差异。结果按年龄分组,以CTDI_(vol)为衡量指标的头颅、胸部、腹盆部DRL典型值分别为14.9~24.1、1.8~4.5和2.0~7.5 mGy;以SSDEWD为衡量指标的DRL典型值分别为14.7~18.9、4.2~6.9和4.7~11.8 mGy;以DLP为衡量指标的DRL典型值分别为260~505、40~185和65~435 mGy·cm。按d分组,以CTDI_(vol)为衡量指标的胸部、腹盆部DRL典型值分别为1.8~6.8和2.2~9.2 mGy;以SSDEWD为衡量指标的DRL典型值分别为4.2~9.1和4.9~13.0 mGy;以DLP为衡量指标的DRL典型值分别为40~255和85~545 mGy·cm。头颅按LAT分组,以CTDI_(vol)为衡量指标的DRL典型值为14.1~23.1 mGy;以SSDEWD为衡量指标的DRL典型值为14.3~18.5 mGy;以DLP为衡量指标的DRL典型值为240~475 mGy·cm。头颅除年龄<1岁、LAT<12.5 cm分组外,CTDI_(vol)均大于SSDEWD,头颅CTDI_(vol)为(18.63±3.24)mGy,SSDEWD为(16.38±1.81)mGy,差异有统计学意义(t=48.78,P<0.001);胸部、腹盆部各分组CTDI_(vol)均小于SSDEWD,胸部CTDI_(vol)为(2.77±1.02)mGy,SSDEWD为(5.22±1.26)mGy,差异有统计学意义(t=-210.89,P<0.001);腹盆部CTDI_(vol)为(3.36±1.82)mGy,SSDEWD为(6.27±2.44)mGy,差异亦有统计学意义(t=-115.16,P<0.001)。结论本医疗机构DRL典型值与其他国家相比处于合理且较低水平,SSDEWD较CTDI_(vol)能更准确反映辐射剂量,亟需建立基于SSDEWD的DRLs。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号