首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The corrosion and tribocorrosion behavior of an as-cast high carbon CoCrMo alloy immersed in phosphate buffered solution (PBS) and phosphate buffered solution with bovine serum albumin (PBS+BSA) have been analyzed by electrochemical techniques and surface microscopy. After the electrochemical characterization of the alloy in both solutions, the sample was studied tribo-electrochemically (by open circuit potential, OCP measurements, potentiodynamic curves and potentiostatic tests) in a ball-on-disk tribometer rotating in different sliding velocities. The influence of solution chemistry, sliding velocity and applied potential on the corrosion and tribocorrosion behavior of the CoCrMo alloy has been studied. Anodic current density increases with sliding velocity but wear rate does not change at an applied anodic potential; on the other hand, BSA modifies the wear debris behavior (by agglomerating the debris formed by mechanical removal of particles) thus increasing the mechanical wear volume. Under cathodic conditions, cathodic current density also increases during mechanical contact while the wear rate decreases with sliding velocity and BSA lubricates the contact thus reducing the total wear volume with respect to the non-containing BSA solution. The work shows how the electrode potential critically affects the corrosion and tribocorrosion rates by increasing the wear coefficients at applied anodic potentials due to severe wear accelerated corrosion.  相似文献   

2.
Swaminathan V  Gilbert JL 《Biomaterials》2012,33(22):5487-5503
Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF)?vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3?mA/cm(2) and 0.63 at about 73?MPa?nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6?mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2?mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of mechanical factors on the experimental results. It was observed that the lowest amount of work was required to generate some of the highest fretting corrosion currents in Ti6Al4V/Ti6Al4V couples compared to the other combinations. The elements of the model presented here provide an excellent basis to explain many of the observed behaviors of these interfaces.  相似文献   

3.
Stem modularity in total hip replacement introduces an additional taper joint between Ti-6Al-4V stem components with the potential for fretting corrosion processes. One possible way to reduce the susceptibility of the Ti-6Al-4V/Ti-6Al-4V interface to fretting is the surface modification of the Ti-6Al-4V alloy. Among the tested, industrially available surface treatments, a combination of two deep anodic spark deposition treatments followed by barrel polishing resulted in a four times lower material release with respect to untreated, machined fretting pad surfaces. The fretting release has been quantified by means of radiotracers introduced in the alloy surface by proton irradiation. In a simple sphere on flat geometry, the semispherical fretting pads were pressed against flat, dog-bone shaped Ti-6Al-4V fatigue samples cyclically loaded at 4 Hz. In this way a cyclic displacement amplitude along the surfaces of 20 mum has been achieved. A further simplification consisted in the use of deionized water as lubricant. A comparison of the radiotracer results with an electrochemical material characterization after selected treatments by potentiostatic tests of modular stems in 0.9% NaCl at 40 degrees C for 10 days confirmed the benefit of deep anodic spark deposition and subsequent barrel polishing for improving the fretting behavior of Ti-6Al-4V.  相似文献   

4.
The literature contains many results from in vitro friction and wear tests for simulating the behaviour of human joint prostheses. However, they are difficult to correlate, even when they are not contradictory. In friction tests, several friction-mechanisms occur when the Ti-6AI-4V titanium alloy rubs against the UHMWPE polyethylene. Corrosion effects which increase wear happen when the 316L stainless steel is used in Ringer's solution. Ion implantation surface treatments have been performed on these three materials. When the operating conditions were optimized, an important reduction of wear and corrosion was observed. The property improvements are due to structural modifications in a thin layer of the materials.  相似文献   

5.
Abnormally high wear rates of ultra high molecular weight polyethylene have been associated with sliding against freshly polished titanium. The wear rate can be brought to the level associated with stainless steel and cast Co-Cr-Mo alloy on polyethylene by the growth of a passive film on titanium. This can be accomplished either in air at elevated temperatures or in oxidizing aqueous solutions.  相似文献   

6.
Modularity of femoral stems and neck components has become a more frequently used tool for an optimized restoration of the hip joint center and improvement of patient biomechanics. The additional taper interface increases the risk of mechanical failure due to fretting and crevice corrosion. Several failures of titanium alloy neck adapters have been documented in case-reports.An experimental fretting device was developed in this study to systematically investigate the effect of micromotion and contact pressure on fretting damage in contact situations similar to taper interfaces of modular hip prostheses under cyclic loading representative of in vivo load conditions. As a first application, the fretting behavior of Ti–6Al–4V titanium alloy components was investigated. Micromotions were varied between 10 μm and 50 μm, maximum contact pressures between 400 and 860 N/mm2. All modes of fretting damage were observed: Fretting wear was found for high micromotions in combination with low contact pressures. Fretting fatigue occurred with reduced movement or increased contact pressures. With small micromotions or high normal pressures, low fretting damage was observed. The developed device can be used to evaluate taper design (and especially contact geometry) as well as different materials prior to clinical use.  相似文献   

7.
316L不锈钢微动过程缝隙腐蚀倾向研究   总被引:2,自引:1,他引:1  
采用球-平面接触微动磨损设备,对轧制固溶316L不锈钢在NaCl溶液微动过程缝隙腐蚀行为进行了研究。通过静、动态电化学测试及材料微动磨蚀形貌观察。揭示了316L不锈钢在NaCl溶液中的微动腐蚀机理。316L不锈钢微动过程具有显缝隙腐蚀倾向,而溶液腐蚀特性与材料缝隙腐蚀的发生、发展有密切关系。  相似文献   

8.
The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio.  相似文献   

9.
Stress dependent electrochemical dissolution is identified as one of the key mechanisms governing surface degradation in fretting and crevice corrosion of biomedical implants. The present study focuses on delineating the roles of mechanical stress and chemical conditions on the life expectancy of modular hip implants. First, material removal on a stressed surface of Ti6Al4V subjected to single asperity contact is investigated experimentally to identify the influence of contact load, in-plane stress and chemical environment on mean wear rates. A range of known stress levels are applied to the specimen while its surface is mechanically stimulated in different non-reactive to oxidizing aqueous environments. Evolution of surface degradation is monitored, and its mechanism is elucidated. This phase allows estimation of Preston Constant which is later used in the analysis. Second phase of the work is semi-analytical and computational, where, based on the estimated Preston constant and other material and process parameters, the scratch propensity (consisting of magnitude of scratch depth and their frequency per unit area) due to micro-motion in modular hip implants is estimated. The third phase views these scratches as initial notches and utilizes a mixed-mode fatigue crack propagation model to estimate the critical crack length for onset of instability. The number of loading cycles needed to reach this critical crack length is then labeled as the expected life of the implant under given mechanical and chemical conditions. Implications of different material and process conditions to life expectancy of orthopedic implants are discussed. It is observed that transverse micro-motion, compared to longitudinal micro-motion, plays a far more critical role in determining the implant life. Patient body weight, as well as proximity of the joint fluid to its iso-electric point play key roles in determining wear rates and associated life expectancies of modular hip implants. Sustained aeration of joint fluid, as well as proper tolerancing of mating surfaces, along with a proper choice of material microstructure may be utilized to extend implant life.  相似文献   

10.
A 12-channel wear screening device was used to compare the wear properties of a variety of prosthetic joint materials. Two types of tests were run: (1) Ultrahigh molecular weight (UHMW) polyethylene bearing against metal or ceramic counterfaces and (2) various polymers bearing against 316 stainless steel as a standard counterface. Wear was quantified by weighing the polymer specimens, with presoaking and control-soak specimens used to minimize the error due to fluid absorption. The specimens were lubricated with bovine blood serum. Friction and polyethylene wear was very low with each of the metals (316 stainless steel, cobalt-chrome alloy, multiphase alloy, and titanium 6-4 alloy) such that the differences in wear rate would not be significant in terms of choosing a material for clinical application. However, titanium 6-4 alloy was found to be especially susceptible to abrasive wear by particles of acrylic cement. Nitrided titanium 6-4 counterfaces were impervious to acrylic abrasion. Polyethylene wear against highly polished, fully dense ceramics (Sialon, Alumina, Macor, and pyrolytic graphite) was as low as that with the metal counterfaces. Wear increased slightly with increasing ceramic surface roughness. The coefficient of friction of polyethylene against pyrolytic graphite was two to three times higher than with the metals or other ceramics. All of the alternate polymers underwent more wear than UHMW polyethylene. Teflon and polyester, two polymers that have proven unsuccessful in prior clinical use, had wear rates 1,600 and 830 times greater than polyethylene, respectively, an indication that the laboratory wear test provided a quantitative prediction of the behavior of the materials in vivo. However, it was difficult to assess the clinical significance of the less extreme wear rates since the ability of the tissues encapsulating a prosthesis to accomodate wear debris is not known on a quantitative basis.  相似文献   

11.
Nitrogen-ion-implanted Ti-6A1-4V against UHMW polyethylene was tested on a joint simulator to evaluate the wear behavior under different conditions. It was concluded that the polymer wear rate was not affected by ion implantation. The metallic wear, on the other hand, was substantially reduced by this treatment. It was also found that ion implantation resulted in good protection of the metal surface against third-body wear by PMMA, while the introduction of C.P. titanium particles in the joint initiated tremendous wear. Although ion implantation improved the wear of titanium alloy against UHMW polyethylene, the durability of the implanted layer needs further study.  相似文献   

12.
新型牙科修复材料—钛与天然牙摩擦学特性匹配的研究   总被引:7,自引:1,他引:6  
新型牙科修复材料钛,不但生物相容性优异,耐腐蚀性强,硬度适中,比重轻,接近人体骨骼,而且力学性能优良,接近ADAS(美国牙医师会)的Ⅲ、Ⅳ型金合金,其比强度(抗拉强度/密度)高,是铝的1.3倍,钢的1.5倍。本文对人体活牙及牙用钛金属修复材料的干态及润滑工况下摩擦磨损进行了对比试验研究。为了更好的模拟牙齿这对摩擦副,实验在改进后的微动试验台上进行,对磨的球面试样为Gr15钢球,运动采取往复运动形式,主要测试参数为:位移幅度500μm,压力20N,频率2Hz,循环5000次。通过比较磨损性能,结果显示,钛的摩擦学性能接近人体天然牙,作为牙科修复材料可望与人体天然牙匹配,是最具有发展前景的人工义齿材料之一。  相似文献   

13.
The fretting corrosion of five materials for implant suprastructures (cast-titanium, machined-titanium, gold alloy, silver-palladium alloy and chromium-nickel alloy), was investigated in vitro, the materials being galvanically coupled to a titanium ball-and-socket-joint with tetrafluoroethylene under mechanical load. Various electrochemical parameters (E(corr), i(corr), Evans diagrams, polarization resistance and Tafel slopes) were analyzed. The microstructure of the different dental materials was observed before and after corrosion processes by optical and electron microscopy. It can be observed that the mechanical load produces an important decrease of the corrosion resistance. The cast and machined titanium had the most passive current density at a given potential and chromium-nickel alloy had the most active critical current density values. The high gold content alloys have excellent resistance corrosion, although this decreases when the gold content is lower in the alloy. The palladium alloy had a low critical current density due to the presence of gallium in this composition but a selective dissolution of copper-rich phases was observed through energy dispersive X-ray analysis.  相似文献   

14.
A comparison has been made of the electrochemical behaviour of investment cast coupons of a 20Cr, 25Ni, Ti stabilized stainless steel (in the nitrided and un-nitrided conditions) with a cobalt-chromium alloy in order to make a preliminary assessment from the point of view of corrosion of the nitrided material for dental and other biomedical applications. Electrochemical tests have been carried out in vitro in artificial saliva and in Ringer's solution, with some additional tests carried out in natural saliva. Both the potential-time behaviour and the magnitude of the breakdown potential on anodic polarization suggest that the protective properties of the passivating film are substantially improved in the case of the nitrided stainless steel alloy.  相似文献   

15.
A novel pin-on-disk type wear tester is described allowing a rapid screening of different types of polyethylene under both unidirectional and multidirectional sliding motion. The wear of four polyethylene materials sliding against a roughened CoCrMo alloy was evaluated: a non-irradiated UHMWPE, a UHMWPE irradiated with a dose of 25 kGy in air, and two types of crosslinked UHMWPE (100 kGy, air), which were subjected to a stabilization heat treatment in nitrogen at 155 degrees C for 72 hours (XLPE I) and in water at 130 degrees C for 72 hours (XLPE II), respectively.Under multidirectional sliding conditions both types of XLPE exhibited significantly less wear with respect to the 25 kGy irradiated UHMWPE and the non-irradiated UHMWPE, even under the rough counterface conditions applied. Under unidirectional sliding motion both types of XLPE exhibited the highest wear of all materials tested, because the orientation hardening effect acting under linear lubricated condition is less pronounced for crosslinked polyethylene.  相似文献   

16.
Investigations over the years have shown that the mirror-finished Al2O3 ceramic is a much more suitable frictional counterpart to ultrahigh molecular weight (UHMW) polyethylene than metal. Despite the extremely gread hardness difference between polyethylene and Al2O3 ceramic, a considerable lower wear rate is obtained for the polyethylene socked with this new low-friction material combination. The unexpectedly favorable tribological behavior of this ceramic material in contact with polyethylene may be attributed to the following factors: better values for corrosion resistance characteristics, wettability with liquids, surfact gloss, hardness, and scratch resistance of the ceramic material in comparison with those of the hitherto used metallic implant materials (AISI-316L steel or cast Co-Cr-Mo alloy). It appears that, by using this new combination of materials for the socket and the ball, it will be possible to prolong the service life of artificial hip joints considerably without having effecy any fundamental changes in the present design and implantation principle retaining the hitherto used anchorage shaft made of wrought Co-Ni-Cr-Mo-Ti alloy Protasul-10 of extremely high corrosion fatigue strength.  相似文献   

17.
The in vivo fretting behavior of modular hip prostheses was simulated to determine the effects of material combination and a unique TiN/AlN coating on fretting and corrosion at the taper interface. Fretting current, open-circuit potential (OCP), and quantities of soluble debris were measured to determine the role of mechanically assisted crevice corrosion on fretting and corrosion of modular hip tapers. Test groups consisting of similar-alloy (Co-Cr-Mo head/Co-Cr-Mo neck), mixed-alloy (Co-Cr-Mo head/Ti-6Al-4V neck), and TiN/AlN-coated mixed-alloy modular hip taper couples were used. Loads required to initiate fretting were similar for all test groups and were well below loads produced by walking and other physical activities. Decreases in OCP and increases in fretting current observed during long-term cyclic loading were indicative of fretting and corrosion. Current measured after cessation of cyclic loading suggests that once the conditions for crevice corrosion are established, corrosion can continue in the absence of loading. The chemical, mechanical, and electrochemical measurements, along with microscopic inspections of the taper surfaces indicate that the fretting and corrosion behavior of similar- and mixed-alloy taper couples are similar and that the coated samples are more resistant to fretting and corrosion. The results of this study clearly indicate the role of mechanical loading in the corrosion process, and support the hypothesis of mechanically assisted crevice corrosion.  相似文献   

18.
In recent years, there is an increasing utilization and demand to use magnetic fields in bioengineering applications due to its beneficial effects. Although in the last decade more attention has been given by tribologists to the electromagnetic processes taking place between sliding surfaces, which influence the tribological behaviors, but no attention has been concern with the sliding surfaces of the artificial implant joints. Therefore, the present work aims to elucidate the tribological behavior of an artificial joint implant under the effect of magnetic fields. Experimental investigation was carried out on a specially designed and constructed hip simulator on which the variations in the coefficients of friction and wear rates of the sliding surfaces were evaluated under the influence of a medium strength magnetic field suitable to apply in the human body. A realistic Ti-alloy implanted stem was used with an inserted head made from surgical grade stainless steel. This head was allowed to rub against UHMWPE sockets. The utilized type of prosthesis was "The JRI Modular Muller Standard-Total Hip Design". The performed experimental tests were conducted under both dry and lubricated sliding conditions using physiological saline solution. The designed simulator allows the coefficients of friction and the wear rates to be evaluated under realistic physiological loading and motion cycles encountered during normal walking of the human body. Comparative results are presented between the artificial joint performance in the presence and absence of the applied magnetic field. The experimental results have indicated that the presence of a medium strength magnetic field of 270 Gauss strength between rubbing surfaces resulted in high beneficial reductions in friction and wear rate of UHMWPE sliding on stainless steel either under dry or saline lubricating conditions. Therefore recommendation was forward to subject artificial implants made of stainless steel/UHMWPE combination of material to such medium strength magnetic field in animal clinical trials aiming to prolong the implant life. Scanning investigation of rubbing surfaces has revealed that the transfer of polymer to the counterface plays a dominant role in dictating the frictional and wear behaviors under dry sliding condition. Smooth molecular profile of the polymer-transferred leads to progressive reductions in friction and wear while the lumpy polymer transfer, formed at the beginning of sliding, increases both friction coefficient and wear. Two action mechanisms dominate the sliding process; adhesive and abrasive mechanisms. The presence of saline lubricant retards the formation of the beneficial polymer transfer thus leading to faster abrasion of the polymeric counterface which explains the relatively rapid and progressive increases in friction and wear.  相似文献   

19.
The aim of this study was to investigate the electrochemical behavior of Ti(49.6)Ni(45.1)Cu(5)Cr(0.3) (TiNiCuCr) alloy in artificial saliva solutions with a wide rage of pH values and to characterize the surface passive film after polarization tests. This article represents the ideal, static environment and associated electrochemical response and comparison values. The corrosion behavior of TiNiCuCr alloy was systematically studied by open circuit potential, potentiodynamic, potentiostatic, and electrochemical impedance techniques. Potentiodynamic and potentiostatic test results showed that the corrosion behavior of TiNiCuCr was similar to that of NiTi alloy. Both corrosion potential (E(corr)) and pitting corrosion potential (E(b)) showed a pH-dependent tendency that E(corr) and E(b) decreased with the increase of the pH value. X-ray photoelectron spectroscopy results revealed the composition of the passive film consisted mainly of TiO(2) with a little amount of Ni oxides (NiO/Ni(2)O(3)) that was identical with NiTi alloy. Besides Ni, a Cu enriched sub-layer was also found. The nickel ion release rate showed a typical time-related decrease as examined by ICP/OES. In conclusion, the addition of Cu and Cr had little effect on the corrosion behavior of NiTi or on the composition and the structure of the passive film.  相似文献   

20.
While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号