首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions.  相似文献   

2.
Cheng X  Roscoe SG 《Biomaterials》2005,26(35):7350-7356
The effect of calcium phosphate surface deposit and the surface adsorption of the serum proteins, bovine serum albumin (BSA) and fibrinogen, on the corrosion resistance and electrochemical behavior of (cp)titanium in phosphate buffer saline solution (pH 7.4) was investigated at physiological temperature, 37 degrees C, using electrochemical impedance spectroscopy and dc electrochemical polarization techniques. The formation of calcium phosphate deposit on the Ti surface decreased both the corrosion rate at the open circuit potential (OCP) and the anodic reaction current in the high anodic potential range (>2.6 V). Addition of BSA significantly moved the OCP towards a more negative (cathodic) potential and inhibited the cathodic corrosion reaction, but did not significantly change the corrosion resistance at the OCP. Addition of fibrinogen showed a similar, but less pronounced effect than BSA. The possible mechanisms leading to these observed effects are discussed.  相似文献   

3.
Swaminathan V  Gilbert JL 《Biomaterials》2012,33(22):5487-5503
Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF)?vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3?mA/cm(2) and 0.63 at about 73?MPa?nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6?mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2?mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of mechanical factors on the experimental results. It was observed that the lowest amount of work was required to generate some of the highest fretting corrosion currents in Ti6Al4V/Ti6Al4V couples compared to the other combinations. The elements of the model presented here provide an excellent basis to explain many of the observed behaviors of these interfaces.  相似文献   

4.
The potential for bone and poly(methyl methacrylate) (PMMA) debris to initiate wear on ASTM-F75 and ASTM-F799 CoCrMo alloys articulating against ultrahigh molecular weight polyethylene (UHMWPE) was investigated. Third-body wear particles of bone and PMMA bone cement (with and without the radiopacifier, barium sulfate) were introduced between CoCrMo and UHMWPE in a reciprocating sliding wear test. A scanning electron microscope and a white light interference surface profilometer were used to study the surface damage and quantify the surface roughnesses of the worn alloys. The CoCrMo alloys, which are widely used as the femoral components in total artificial knees and hips, showed surface damage as the result of wear in the presence of bone or PMMA debris. Severe scratches were generated within 2700 cycles (94.5-m sliding distance) on the alloy's surface. Ploughing was the major wear mechanism. Carbides in the F75 alloy surface appeared to be unaffected by the debris. A quantitative study was performed on the surface roughness (average roughness, R(a), and root mean square roughness, RMS) of the alloy after wear testing. A nonparametric Wilcoxon rank sum test of wear severity (R(a) and RMS) was performed based on the surface roughness data. The surfaces of the specimens tested with the PMMA and bone particles were significantly rougher than those of the controls (p < 0.01). Small scratches also occurred on some of the control specimen surfaces and may have been second-body wear caused by defects and impurities in the UHMWPE.  相似文献   

5.
The mechanical and electrochemical behavior of the surface oxides of CoCrMo and Ti6Al4V alloys during fracture and repassivation play an important role in the corrosion of the taper interfaces of modular hip implants. This behavior was investigated in one group of CoCrMo and Ti6Al4V alloy samples passivated with nitric acid and another group coated with a novel TiN/AlN coating. The effects of mechanical load and sample potential on peak currents and time constants resulting from fracture of the surface oxide or coating, and the effects of mechanical load on scratch depth were investigated to determine the mechanical and electrochemical properties of the oxides or coating. The polarization behavior of the samples after fracture of the oxide or coating was also investigated. CoCrMo had a stronger surface oxide and higher interfacial adhesion strength, making it more resistant to fracture than Ti6Al4V. If undisturbed, the oxide on the surface of Ti6Al4V significantly reduced dissolution currents at a wider range of potentials than CoCrMo, making Ti6Al4V more resistant to corrosion. The TiN/AlN coating had a higher hardness and modulus of elasticity than CoCrMo and Ti6Al4V. It was much less susceptible to fracture, had a higher interfacial adhesion strength, and was a better barrier to ionic diffusion than the surface oxides on CoCrMo and Ti6Al4V. The coating provided increased corrosion and fretting resistance to the substrate alloys.  相似文献   

6.
Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. These excursions may compromise the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. The in vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each voltage were measured and related to the observed responses. Results show that cathodic and anodic voltages outside the voltage viability range (-400 < V < +500) lead to primarily intrinsic apoptotic and necrotic cell death, respectively. Cell death is associated with cathodic current densities of 0.1 μA cm(-2) and anodic current densities of 10 μA cm(-2). Significant increase in metallic ions (Co, Cr, Ni, Mo) was seen at +500 mV, and -1000 mV (Cr only) compared to open circuit potential. The number and total projected area of adhesion complexes was also lower on the polarized alloy (p < 0.05). These results show that reduction reactions on CoCrMo alloys leads to apoptosis of cells on the surface and may be a relevant mode of cell death for metallic implants in-vivo.  相似文献   

7.
采用电化学测试技术在动态循环人工模拟体液中对冠状动脉支架用SUS316L和SUS317不锈钢的电化学机理进行研究。结果表明,流动环境降低了不锈钢的点蚀电位Eb值,提高了点蚀敏感性,促进了阳极活性溶解,但对再钝化电位Ep值影响不大。流动对奥氏体不锈钢试样的阴极极化行为有着显著影响,介质流动使氧到达电极表面的传质控制层减薄,加速氧的传质,增大阴极极化电流密度,并随流速的提高阴极吸氧反应加快。  相似文献   

8.
The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behavior of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel type ASTM F138. Experiments were carried out using four different different test solutions: phosphate buffered saline (PBS), Dulbecco minimum essential medium (MEM), MEM + fetal calf serum (FCS), and MEM + fetal calf serum + fibroblast cell (CELL). Specimens were finished to 600-grit SiC paper and were tested in conditions that did not provoke abrupt mechanical damage of the passive film. Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (R, resistance; CPE, constant phase element). The R(1) and CPE(1) branch was assigned to the inner compact passive film and the R(2) and CPE(2) branch to the external porous film. The resistance of the inner film R(1), roughly corresponding to the polarization resistance (R(p)), which is inversely proportional to the material's corrosion rate, increased with the immersion time and was generally greater in PBS than in other media. With the exception of FCS solution, R(1) for NiTi alloy is better or similar to that of ASTM F138.  相似文献   

9.
The friction coefficients of CoCrMo sliding against UHMWPE and CoCrMo were measured in solutions of albumin and synovial fluid containing fluorescently labeled albumin. No fluorescence could be observed on the CoCrMo disc following incubation in labeled albumin or after sliding against CoCrMo. This was due to quenching of the fluorophore by the metal and indicated that a protein film thicker than 10 nm was not formed on the surface. A more complicated behavior was observed for UHMWPE sliding against CoCrMo. For each lubricating solution and at each load, a bimodal distribution of steady-state friction values was observed, the friction coefficient either remaining constant or decreasing during the early stages of the measurement. As no quenching of the fluorophores occurred on the UHMWPE surface, the fluorescence labeling method could be used to reveal polyethylene (PE) transfer and to show that it correlates with the friction coefficient: Low friction coefficients corresponded to a low density of PE spots on the CoCrMo surface. In addition, it was found that the friction coefficients for UHMWPE sliding against CoCrMo in synovial fluid were not significantly different from those in phosphate-buffered saline (PBS), but that the addition of albumin to PBS did cause a significant increase in the friction coefficient.  相似文献   

10.
The behavior of a CoCrMo alloy and its components was studied in simulated physiological solution (Hank’s solution) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The passivation of all samples occurred spontaneously at the open circuit potential. The composition of the oxide films as a function of the solution components and the applied potential is discussed. The electrochemical properties of the spontaneously passivated electrodes at the open circuit potential were studied by EIS. The polarization resistance (Rp) and the electrode capacitance (Cdl) were determined. The higher Rp of the alloy than of the chromium pointed to the stabilizing effect of the other alloy components. The concentration of the metallic ions in a simulated physiological solution, measured by inductively coupled plasma-mass spectrometry, was in accordance with the values of both the Rp determined from EIS data and current densities measured with CV.  相似文献   

11.
Okazaki Y 《Biomaterials》2002,23(9):2071-2077
The effect of friction on the anodic polarization properties of metallic biomaterials in a physiological saline solution was investigated. The current density during friction becomes higher than during the static condition. The fluctuation range of the current density caused by the destruction and formation of passive film was observed. For SUS316L stainless steel and Co-Cr-Mo casting alloy, the fluctuation range was observed in the passivity zone. Otherwise, for Ti alloys, the fluctuation range was observed in both the activity and passivity zones. The decrease of the corrosion potential for Ti alloys due to friction was much larger than that of SUS316L stainless steel and Co-Cr-Mo casting alloy. From this result, it was considered that in a the frictional environment, the stressing zone turned anodic and its periphery cathodic, and corrosion tended to progress more than in the static environment. The effect of wear on the anodic polarization curves also changed depending on the frictional load, potential zone and the pH of the solution. A rapid increase in current density due to corrosion starting from the frictional area was found in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys containing Al. However, for the new Ti-15Zr-4Nb-4Ta alloy, this rapid increase was not seen in the high-potential region. The effect of the lateral reciprocal speed was also negligible for the new Ti alloy. It was found that the new Ti-15Zr-4Nb-4Ta alloy exhibited excellent corrosion resistance under friction.  相似文献   

12.
Bulk metallic glasses (BMGs) represent an emerging class of materials with an amorphous structure and a unique combination of properties. The objectives of this investigation were to define the electrochemical behavior of a specific Zr-based BMG alloy in a physiologically relevant environment and to compare these properties to standard, crystalline biomaterials as well as other Zr-based BMG compositions. Cyclic-anodic-polarization studies were conducted with a Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 (at %) BMG in a phosphate-buffered saline electrolyte with a physiologically relevant oxygen content at 37 degrees C. The results were compared to three common, crystalline biomaterials: CoCrMo, 316L stainless steel, and Ti-6Al-4V. The BMG alloy was found to have a lower corrosion penetration rate (CPR), as compared to the 316L stainless steel, and an equivalent CPR, as compared to the CoCrMo and Ti-6Al-4V alloys. Furthermore, the BMG alloy demonstrated better localized corrosion resistance than the 316L stainless steel. However, the localized corrosion resistance of the BMG alloy was not as high as those of the CoCrMo and Ti-6Al-4V alloys in the tested environment. The excellent electrochemical properties demonstrated by the BMG alloy are combined with a low modulus and unparalleled strength. This unique combination of properties dramatically demonstrates the potential for amorphous alloys as a new generation of biomaterials.  相似文献   

13.
Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb).  相似文献   

14.
Two Ni-free bulk metallic glasses (BMGs) of Zr(60)Nb(5)Cu(22.5)Pd(5)Al(7.5) and Zr(60)Nb(5)Cu(20)Fe(5)Al(10) were successfully prepared by arc-melting and copper mold casting. The thermal stability and crystallization were studied using differential scanning calorimetry. It demonstrates that the two BMGs exhibit very good glass forming ability with a wide supercooled liquid region. A multi-step process of crystallization with a preferential formation of quasicrystals occurred in both BMGs under continuous heating. The deformation behavior of the two BMGs was investigated using quasi-static compression testing. It reveals that the BMGs exhibit not only superior strength but also an extended plasticity. Corrosion behaviors of the BMGs were investigated in phosphate buffered solution by electrochemical polarization. The result shows that the two BMGs exhibit excellent corrosion resistance characterized by low corrosion current densities and wide passive regions. X-ray photoelectron spectroscopy analysis revealed that the passive film formed after anodic polarization was highly enriched in zirconium, niobium, and aluminum oxides. This is attributed to the excellent corrosion resistance. Additionally, the potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for 1 week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide assay and SEM observation. The results indicate that the two Ni-free BMGs exhibit as good biocompatibility as Ti-6Al-4V alloy, and thus show a promising potential for biomedical applications.  相似文献   

15.
Reclaru L  Eschler PY  Lerf R  Blatter A 《Biomaterials》2005,26(23):4747-4756
The corrosion behavior of CoCrMo implants with rough titanium coatings, applied by different suppliers by either sintering or vacuum plasma spraying, has been evaluated and compared with uncoated material. The open-circuit potential, corrosion current and polarization resistance were determined by electrochemical techniques. The Co, Cr and Ti ions released from the samples into the electrolyte during a potentiostatic extraction technique were analyzed using ICP-MS. The Ti coatings from the different suppliers showed a different porous morphology, and the implants exhibited a distinct corrosion activity, underlining the importance of the coating process parameters. Among the titanium coated samples, the one with the sintered overcoat turned out to be the most resistant. Yet, on an absolute scale, they all showed a corrosion resistance inferior to that of uncoated CoCrMo or wrought titanium.  相似文献   

16.
Ti alloys are used in orthopaedic applications owing to their appropriate mechanical properties and their excellent corrosion resistance. The release of titanium and the other alloying elements into the surrounding tissue has been reported due either to passive corrosion or accelerating processes such as wear. Since the passive layer can be broken down in certain circumstances by wear it is important to study the ability of these alloys to repassivate in biological environments, in particular in the presence of proteins, and evaluate how the repassivated surface may vary from the original surface. In this study we investigated the ability of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr to repassivate in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum in PBS at different pH values and at different albumin concentrations. It was found that an increase in pH had a greater effect on the corrosion behaviour of Ti-6Al-4V and Ti-6Al-7Nb than on Ti-13Nb-13Zr in PBS and that the addition of protein to the PBS reduced the influence of pH on the corrosion behaviour of all the alloys. The effect of the corrosion and repassivation was investigated by measuring changes in the surface hardness of the alloys and it was found that corrosion reduced the hardness of the surface oxides of all the alloys. In PBS the reduction was smallest for Ti-6Al-4V and largest for Ti-13Nb- 3Zr and that corrosion in protein solutions further reduced the hardness of the surface oxides. This effect was greater for Ti-6Al-4V and Ti-6Al-7Nb than for Ti-13Nb-13Zr. In conclusion, proteins in the environment appear to interact with the repassivation process at the surface of these alloys and influence the resulting surface properties.  相似文献   

17.
The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids.  相似文献   

18.
The corrosion behaviour of AZ31 magnesium alloy with different grain sizes immersed in simulated body fluids was compared in chloride solution (8 g l?1) and in phosphate-buffer solution (PBS). The influence of immersion time was also analyzed. Electrochemical techniques such as open circuit potential, polarization curves, transient currents and electrochemical impedance spectroscopy, complemented with scanning electron microscopy and energy dispersive spectroscopy, were used. Immediately after the immersion in the corrosive media the corrosion resistance was similar for both grain sizes of the AZ31 alloy and higher in NaCl solutions than in PBS. However, this corrosion behaviour was reversed after longer periods of immersion due to the stabilizing of the corrosion products of MgO by P-containing compounds. These P-compounds contribute to a higher level of protection by hindering the aggressive action of chloride ions. The best corrosion behaviour of the AZ31 alloy was obtained for the finest grain alloy associated with the highest transfer resistance value, after long periods of immersion in PBS.  相似文献   

19.
Protein layers are deployed over the surfaces of microdevices such as biological microelectromechanical systems (bioMEMS) and bioimplants as functional layers that confer specific molecular recognition or binding properties or to facilitate biocompatibility with biological tissue. When a microdevice comes in contact with any exterior environment, like tissues and/or fluids with a variable pH, the biomolecules on its surface may get abraded. Silicon based bioMEMS are an important class of devices. Adhesion, friction and wear properties of biomolecules (e.g., proteins) on silicon based surfaces are therefore important. Adhesion was studied between streptavidin and a thermally grown silica substrate in a phosphate buffered saline (PBS) solution with various pH values as a function of the concentration of biomolecules in the solution. Friction and wear properties of streptavidin (protein) biomolecules coated on silica by direct physical adsorption and a chemical linker method were studied in PBS using the tapping mode atomic force microscopy at a range of free amplitude voltages. Fluorescence microscopy was used to study the detailed wear mechanism of the biomolecules. Based on this study, adhesion, friction and wear mechanisms of biomolecules on silicon based surfaces are discussed.  相似文献   

20.
Xin Y  Huo K  Tao H  Tang G  Chu PK 《Acta biomaterialia》2008,4(6):2008-2015
Various electrochemical approaches, including potentiodynamic polarization, open circuit potential evolution and electrochemical impedance spectroscopy (EIS), are employed to investigate the degradation behavior of biomedical magnesium alloy under the influence of aggressive ions, such as chloride, phosphate, carbonate and sulfate, in a physiological environment. The synergetic effects and mutual influence of these ions on the degradation behavior of Mg are revealed. Our results demonstrate that chloride ions can induce porous pitting corrosion. In the presence of phosphates, the corrosion rate decreases and the formation of pitting corrosion is significantly delayed due to precipitation of magnesium phosphate. Hydrogen carbonate ions are observed to stimulate the corrosion of magnesium alloy during the early immersion stage but they can also induce rapid passivation on the surface. This surface passivation behavior mainly results from the fast precipitation of magnesium carbonate in the corrosion product layer that can subsequently inhibit pitting corrosion completely. Sulfate ions are also found to stimulate magnesium dissolution. These results improve our understanding on the degradation mechanism of surgical magnesium in the physiological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号