首页 | 本学科首页   官方微博 | 高级检索  
检索        


Friction and wear properties of polymer,metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device
Authors:McKellop H  Clarke I  Markolf K  Amstutz H
Institution:Biomechanics Research Section, Division of Orthopaedic Surgery, University of California, Los Angeles, California 90024, USA.
Abstract:A 12-channel wear screening device was used to compare the wear properties of a variety of prosthetic joint materials. Two types of tests were run: (1) Ultrahigh molecular weight (UHMW) polyethylene bearing against metal or ceramic counterfaces and (2) various polymers bearing against 316 stainless steel as a standard counterface. Wear was quantified by weighing the polymer specimens, with presoaking and control-soak specimens used to minimize the error due to fluid absorption. The specimens were lubricated with bovine blood serum. Friction and polyethylene wear was very low with each of the metals (316 stainless steel, cobalt-chrome alloy, multiphase alloy, and titanium 6-4 alloy) such that the differences in wear rate would not be significant in terms of choosing a material for clinical application. However, titanium 6-4 alloy was found to be especially susceptible to abrasive wear by particles of acrylic cement. Nitrided titanium 6-4 counterfaces were impervious to acrylic abrasion. Polyethylene wear against highly polished, fully dense ceramics (Sialon, Alumina, Macor, and pyrolytic graphite) was as low as that with the metal counterfaces. Wear increased slightly with increasing ceramic surface roughness. The coefficient of friction of polyethylene against pyrolytic graphite was two to three times higher than with the metals or other ceramics. All of the alternate polymers underwent more wear than UHMW polyethylene. Teflon and polyester, two polymers that have proven unsuccessful in prior clinical use, had wear rates 1,600 and 830 times greater than polyethylene, respectively, an indication that the laboratory wear test provided a quantitative prediction of the behavior of the materials in vivo. However, it was difficult to assess the clinical significance of the less extreme wear rates since the ability of the tissues encapsulating a prosthesis to accomodate wear debris is not known on a quantitative basis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号