首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的 考察振荡流动以及三维支架孔径和孔隙率对生物反应器内流速和剪切力分布的影响,并根据理论计算结果为脱细胞骨三维支架和灌注式生物反应器制备提出优化方法。方法 针对实验室前期制备的骨组织工程用脱细胞骨三维支架和灌注式生物反应器,将脱细胞骨三维支架简化为各向同性的多孔介质,对生物反应器内的流速和剪切力分布进行理论建模。结果 振荡流作用时,多孔支架材料内速度和达西剪切力呈现一致的变化规律,不同半径处流速和达西剪切力差异减小,有利于在骨组织工程中对种子细胞进行均匀三维培养。提高入口灌流速度可提高平均达西剪切力;增加多孔支架孔径或孔隙率对支架内流速峰值影响不大,但会显著降低平均达西剪切力;提高入口振荡流动振荡频率可降低支架内流速最大峰值,显著减小不同半径处流速的差异。结论 适宜的振荡流易产生利于骨组织工程干细胞所需剪切力,研究结果有望为优化骨组织工程中种子细胞的三维培养方法提供理论指导。  相似文献   

2.
目的研究不同骨支架结构的力学性能与内部流场分布,为模型结构的优劣提供直观上的比较和评判,为骨支架结构设计提供有效的指导方法。方法利用Pro/Engineer和MIMICS等软件重建自然结构骨支架、编织状骨支架和球形孔骨支架,并通过有限元方法分析3种支架的有效弹性模量、应力分布和三维灌注培养下支架内部流场分布。结果采用相同材料设计得到的自然结构骨支架表现出更小的有效弹性模量;当3种支架受到相同压力时,自然结构骨支架内部应力峰值更小且应力分布更均匀;初始流速和流体黏度相同时,自然结构骨支架表现出更小的内部流速、壁面剪切应力和壁面压力。结论自然结构骨支架模型具有相对较好的生物力学性能,在3种骨支架中最适合用于骨组织工程中骨支架结构选型。  相似文献   

3.
支架或植入体的弹性模量过高会产生应力遮挡效应,引发骨吸收以及后期支架或植入体松动等问题。多孔支架和植入体可以根据需要调整其孔隙率和弹性模量,从而减小应力遮挡,同时多孔结构有利于骨组织的长入,利于骨整合。分别介绍3D打印多孔支架和植入体3种基本结构(均匀多孔结构、类骨小梁结构和功能梯度结构)的设计方法,以及基于计算机辅助设计、隐式曲面、图像、拓扑优化的设计方法,为解决应力遮挡问题和设计3D打印多孔支架和植入体提供参考建议。  相似文献   

4.
支架材料对血管生成的诱导作用可以提高成骨的容积以及骨组织移植的成功率,所以血管生成是骨组织形成的先决条件之一。如何在支架材料中构建血管网络或在材料诱导成骨中促进血管的生成,已经在世界范围内广泛开展。研究表明,磷酸钙作为骨组织工程研究中最常用的支架材料,可以通过结构优化赋予其良好的骨传导性和骨诱导性,但磷酸钙支架的应用研究还没有充分认识到其在血管生成方面的影响和所起的关键作用。综述磷酸钙支架材料对血管生成的影响,并强调其在骨组织工程中促血管生成的重要性。  相似文献   

5.
生物衍生骨在骨组织工程研究中的应用   总被引:1,自引:0,他引:1  
支架材料的选取是骨组织工程研究的关键 ,生物衍生骨具有较好的生物相容性和材料界面 ,三维立体孔隙 -网架合理 ,可塑性强 ,可降解 ,并具备一定的力学强度 ,兼备良好的骨传导及一定的骨诱导能力。可作为种子细胞的支架材料应用于骨组织工程研究。  相似文献   

6.
背景:骨组织工程研究发现,Voronoi骨支架黏附性和渗透率是影响骨组织工程支架的重要参数,良好的黏附性可以保证骨细胞在支架内部的黏附,从而促进骨组织的再生,而优异的渗透率可以促进营养物质及代谢废物在体内的运输。目的:研究Voronoi骨支架的黏附性及渗透率。方法:以Voronoi骨支架为研究对象,通过Rhino软件对其结构进行了建模,同时借助计算流体力学(CFD)方法对骨支架内部的渗透率及黏附性进行了分析,设定种子点数为20,25,30,缩放因子分别为0.4,0.5,0.6,0.7,0.8,探讨孔隙率与渗透率之间的对应关系。结果与结论:①通过Rhino软件设计得到的Voronoi骨支架结构,平均黏附层厚度分布在0.061-0.116 mm之间,其具有一定的黏附能力,其孔隙率在很大程度上是由缩放因子决定的,随缩放因子的不断增加其孔隙率呈上升趋势,在所选结构设计参数范围内,当缩放因子为0.4时,不同种子点数的支架结构孔隙率均最小,分别为33.78%,33.87%,33.90%;当缩放因子为0.8时,不同种子点数的支架结构孔隙率均最大,分别为84.28%,84.35%,84.38%。②孔隙率的增加对支架结构的渗透率产生了明显影响,随孔隙率的增加,骨支架结构的渗透率呈上升趋势,在所设计支架结构中随孔隙率的变化,其渗透率由16.98×10^(-8)m^(2)增长到82.29×10^(-8)m^(2)。③对支架结构的孔隙率与渗透率之间的关系进行拟合,得到孔隙率与渗透率的关系方程,为骨支架渗透率的预测提供了依据,为复杂结构骨支架生物性能的分析提供了参考。  相似文献   

7.
一种用于骨组织工程研究的加载装置   总被引:2,自引:0,他引:2  
力学环境对骨内细胞的生物学行为有重要影响。无论是体内还是体外培养,骨组织的生长、发育都依赖力学环境。根据骨组织生理调节中的力学感知、传导、传质机理,研制一种用于骨组织工程研究的加载装置。该装置可为体外骨组织培养提供生理范围内不同大小、频率的应变及不同的应变波形,特别是对有一定强度的硬支架(与松质骨、密质骨强度相当)也能满足生理应变的要求。采用弹性较优的合成塑料作为参考支架进行有效性检测,结果表明在支架材料上此装置产生正常的生理应变,且重复精度高。装置使用智能材料-压电陶瓷作为动力来源,通过计算机控制实现了骨支架材料骨生理水平应变的精确控制。此装置将为工程化骨组织构建中载荷影响的研究提供方便。  相似文献   

8.
支架材料的选取是骨组织工程研究的关键,生物衍生骨具有较好的生物相容性和材料界面,三维立体孔隙-网架合理,可塑性强,可降解,并具备一定的力学强度,兼备良好的骨传导及一定的骨诱导能力。可作为种子细胞的支架材料应用于骨组织工程研究。  相似文献   

9.
背景:作为体内组织工程骨的构建场所,非骨组织的选择至关重要。早期研究大多选用肌肉作为异位骨移植物的构建区域,但其位置较深,可利用面积小、手术操作复杂,不利于临床推广。 目的:采用体内骨组织工程的方法,探索骨诱导性磷酸钙陶瓷支架在不同非骨组织中构建骨移植物的可行性。 方法:选取家犬的背部肌肉组织和脂肪组织为构建区,分别植入骨诱导性磷酸钙陶瓷支架以构建体内组织工程骨移植物。于移植后4,8,12,16周取样进行单光子计算机断层扫描及组织学检测,观察其构建过程,比较各个观测时间内,不同构建区的骨移植物中新骨组织的形成情况,评价不同非骨构建区域对体内骨组织骨移植物形成的影响。 结果与结论:骨诱导性磷酸钙陶瓷支架在肌肉组织和脂肪两处非骨组织中均可形成体内组织工程骨移植物,在构建初期,肌肉组中新骨形成的时间比脂肪组早,骨量也较多,但随着构建时间的延长,两组的新生骨量差异逐渐减小。提示,应用体内骨组织工程的方法在肌肉和脂肪组织均可构建出具有生命活性的自体骨移植物。与肌肉组织比较,脂肪组织面积宽广,位置浅表,因此在脂肪组织中构建体内组织工程骨移植物更有临床应用前景。  相似文献   

10.
测量了骨替代材料的动态力学性能参数,以比较研究与骨的力学性能差别。利用分离式霍普金森压杆测量了3种不同骨替代材料的动态应力应变曲线、相应的表观强度极限、表观弹性模量等参数。实验结果表明,动态抗压强度大于静态抗压强度,3种骨替代材料的抗压强度和动态表观弹性模量比密质骨的抗压强度和弹性模量要小一个数量级。这意味着这类骨替代材料被植入到活体后,在其内部生长的骨组织和胶原纤维需大幅度提高强度和刚度,才能使其起到和活体骨相同的作用。  相似文献   

11.
目的分析不同孔隙结构和孔隙率骨组织工程支架的力学性能,并对支架的孔隙结构进行改进设计使其性能提高。方法利用SolidWorks软件进行方形孔、球形孔和圆柱形孔3种结构55%~75%孔隙率的支架建模,计算得到各结构的表面积体积比;利用ANSYS Workbench软件进行结构受力的有限元计算,得到支架结构的应力分布和等效压缩模量;根据应力分布的特点,将方形孔的支架结构改进为长方形孔隙结构和长方体单元结构两种支架。结果随着孔隙率的增加,3种结构的表面积体积比均增大,对于相同的孔隙率,方形孔和球形孔的表面积体积比较大,圆柱形孔最小;3种结构的最大压应力总体趋势是随着孔隙率的增加而增大,对于同一孔隙率的3种结构,方形孔的最大压应力最小;3种结构的模量和孔隙率近似呈线性关系,方形孔和圆柱形孔的模量值相近;60%孔隙率的方形孔及两种改进结构应力分析表明,两种改进结构的平行于应力方向的4条棱侧壁应力可减小约15%。结论方形孔的表面积体积比和力学性能比相同孔隙率的球形孔和圆柱形孔结构要更有优势,而改进的两种结构又可以提高方形孔的力学性能,两种改进的孔隙丰富了组织工程支架的结构,研究结果为两种支架的临床应用提供力学依据。  相似文献   

12.
背景:应力遮挡效应会导致植入假体修复骨缺损手术失败,其主要原因是由于植入假体的弹性模量大于骨组织弹性模量。目的:分析植入假体弹性模量对应力分布的影响,寻求消除应力遮挡现象的方法。方法:通过CT扫描的方式获取实验犬与人体骨组织的模型,分别对其优化后进行梯度赋值,建立较为可靠的骨骼力学模型,并与植入假体组合后进行有限元仿真。首先,通过对比格犬骨骼模型和人体骨骼模型及其对应的植入假体进行有限元仿真,模拟了不同弹性模量对植入假体修复术后的应力和位移分布情况;其次,分析了较小弹性模量差仍会形成应力遮挡现象的原因,建立了骨骼模型及植入假体模型,确立了材料属性赋予方法;最后,验证了该模型及材料属性赋予方法的可行性,并通过随机选取受力点的方式,定量分析植入假体弹性模量与骨骼弹性模量之间的关系对应力遮挡形成的影响。结果与结论:通过梯度赋值法建立与骨骼力学性质更加接近的实验犬骨骼模型和人体骨骼模型,该方法重建的力学模型与真实骨骼的力学性质更为接近;通过有限元仿真力学测试证明,不同弹性模量植入假体对假体本身与周围骨骼间相对位移的影响较小;另外量化弹性模量对假体植入骨骼后对应力分布的影响,可为后续的相关研究提供帮助。  相似文献   

13.
Controllability of scaffold architecture is essential to meet specific criteria for bone tissue engineering implants, including adequate porosity, interconnectivity, and mechanical properties to promote bone growth. Many current scaffold manufacturing techniques induce random porosity in bulk materials, requiring high porosities (>95%) to guarantee complete interconnectivity, but the high porosity sacrifices mechanical properties. Additionally, the stochastic arrangement of pores causes scaffold-to-scaffold variation. Here, we introduce a biodegradable poly(lactic-co-glycolic acid) (PLGA) scaffold with an inverted colloidal crystal (ICC) structure that provides a highly ordered arrangement of identical spherical cavities. Colloidal crystals (CCs) were constructed with soda lime beads of 100-, 200-, and 330-mum diameters. After the CCs were annealed, they were infiltrated with 85:15 PLGA. The method of construction and highly ordered structure allowed for ease of control over cavity and interconnecting channel diameters and for full interconnectivity at lower porosities. The scaffolds demonstrated high mechanical properties for PLGA alone (>50 MPa), in vitro biocompatibility, and maintenance of osteoblast phenotype, making them promising for a highly controllable bone tissue engineering scaffold.  相似文献   

14.
Mechanical behaviour of porous hydroxyapatite   总被引:1,自引:0,他引:1  
The aim of the study was to investigate the role of microstructure and porosity on the mechanical behaviour of sintered hydroxyapatite. Hydroxyapatite disks with four different porosities were used in this investigation. With a nanoindentation system, elastic modulus, hardness, contact stress–strain relationship, energy absorption and indentation creep behaviour were investigated. The elastic modulus and hardness of hydroxyapatite exhibited an exponential relationship (ebP) with the porosity P, which is similar to Rice’s finding with the minimum solid area model. High porosity samples showed more substantial inelastic behaviour, including higher energy absorption, no linear elastic region in the contact stress–strain curve and some indentation creep behaviour. We conclude that porous microstructure endows hydroxyapatite with inelastic deformation properties, which are important in a material for bone substitution usage.  相似文献   

15.
Porous TiNbZr alloy scaffolds for biomedical applications   总被引:1,自引:0,他引:1  
In the present study, porous Ti–10Nb–10Zr alloy scaffolds with different porosities were successfully fabricated by a “space-holder” sintering method. By the addition of biocompatible alloying elements the porous TiNbZr scaffolds achieved significantly higher strength than unalloyed Ti scaffolds of the same porosity. In particular, the porous TiNbZr alloy with 59% porosity exhibited an elastic modulus and plateau stress of 5.6 GPa and 137 MPa, respectively. The porous alloys exhibited excellent ductility during compression tests and the deformation mechanism is mainly governed by bending and buckling of the struts. Cell cultures revealed that SaOS2 osteoblast-like cells grew on the surface and inside the pores and showed good spreading. Cell viability for the porous scaffold was three times higher than the solid counterpart. The present study has demonstrated that the porous TiNbZr alloy scaffolds are promising scaffold biomaterials for bone tissue engineering by virtue of their appropriate mechanical properties, highly porous structure and excellent biocompatibility.  相似文献   

16.
3D打印骨组织工程支架是近来的研究热点,而制备同时具有高孔隙率和足够力学性能的骨组织工程支架是研究的难点之一。在孔隙率相同条件下,探究不同填充角度结构对3D打印支架力学性能影响。首先用SolidWorks软件设计孔隙率相同的3种不同填充角度(45°、60°、90°)支架结构,以交点处结构作为支架的最小支撑单元,并用ABAQUS软件对其进行力学性能仿真,对仿真所得单元结构压缩模量进行累加,探究填充角度对支架力学性能的影响;进而通过3D打印制备3种填充结构的羟基磷灰石支架,测试支架的孔隙率和力学性能,对仿真结果进行验证。结果表明,仿真所得3种填充结构的压缩模量比为Es(90°)∶Es(60°)∶Es(45°)=12.3∶10.9∶10.0。打印得到3种不同填充角度(90°,60°,45°)的羟基磷灰石支架孔隙率无显著性差异,其压缩模量比为Es(90°)∶Es(60°)∶Es(45°)=15.4∶13.1∶10.0,与仿真结果趋势一致,90°填充的支架具有最高的抗压强度((7.36±0.63) MPa)和压缩模量((33.55 ± 2.49) MPa),与力学性能最低的45°填充支架相比,抗压强提高74.8%,压缩模量提高55.18%。在孔隙率相同的条件下,单个孔型面积越小,其压缩模量和抗压强度越高。该研究为制备最优填充结构的3D打印生物支架提供分析方法和理论依据。  相似文献   

17.
磷酸三钙(TCP)是构建骨组织工程支架常用的生物陶瓷材料。三维(3D)打印的TCP支架具有精确可控的孔隙结构,但存在力学性能不足的问题。由于烧结工艺对生物陶瓷支架力学性能的影响至关重要,本文详细探讨了不同烧结温度对3D打印TCP支架的力学性能的影响,测试了不同烧结温度制备的支架的表观形貌、质量和体积收缩率、孔隙率、力学性能以及降解性能。结果表明,当烧结温度为1150℃时,晶粒生长充分、气孔最少,支架具有最大的体积收缩率、最小的孔隙率以及最优的力学性能,压缩模量和抗压强度可以分别达到(100.08±18.6)MPa和(6.52±0.84)MPa,能够满足人体松质骨力学强度的要求。此外,与其他烧结温度下制备的支架相比,1150℃下烧结制备的支架在酸性环境中降解最慢,进一步说明其在长期植入时具有更佳的力学稳定性。该支架可支持骨髓间充质干细胞(BMSCs)黏附和快速增殖,具有良好的生物相容性。综上,本文优化了3D打印TCP支架的烧结工艺,提高了其力学性能,为其作为承重骨的应用奠定了基础。  相似文献   

18.
目的 研究基于lattice Weaire-Phelan(LWP)结构支架的力学性能,并利用有限元方法精确模拟多孔支架的整个压缩过程。方法 采用选择性激光熔融(selective laser melting,SLM)技术制造具有不同孔隙率的Ti6Al4V(TC4)多孔支架。通过单轴压缩试验测试样件力学属性,并与人体骨骼及其他支架结构进行对比。验证4种材料模型对多孔支架压缩仿真结果 的影响。结果 LWP支架展现出与人体松质骨十分接近的弹性模量以及高于大多数皮质骨的屈服强度。与其他支架结构相比,LWP支架具有几乎最小的弹性模量和最大的屈服强度。利用本文提出的材料模型,即Johnson-Cook本构模型和动态几何应变失效模型(Johnson-Cook constitutive model and failure model based on dynamic geometric strain,JCDG),模拟出的结果 与试验数据非常接近。结论 作为骨修复材料,LWP支架展现出比其他支架结构更优秀的力学性能。与其他材料模型相比,JCDG更有利于构建出合理的多孔支架压缩仿真模型。  相似文献   

19.
Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, several promising biodegradable materials have been introduced, including poly(propylene fumarate) (PPF). The development of micro-stereolithography allows the fabrication of free-form 3D microstructures as designed. Since this technology requires a low-viscosity resin to fabricate fine structures, we reduced the viscosity of PPF by adding diethyl fumarate. Using our system, the curing characteristics and material properties of the resin were analyzed experimentally. Then, we fabricated waffle shape and 3D scaffolds containing several hundred regular micro pores. This method controlled the pore size, porosity, interconnectivity, and pore distribution. The results show that micro-stereolithography has big advantages over conventional fabrication methods. In addition, the ultimate strength and elastic modulus of the fabricated scaffolds were measured, and cell adhesion to the fabricated scaffold was observed by growing seeded cells on it. These results showed that the PPF/DEF scaffold is a potential bone scaffold for tissue engineering.  相似文献   

20.
We investigated the fabrication of highly porous scaffolds made of three different materials [poly(propylene fumarate) (PPF) polymer, an ultra-short single-walled carbon nanotube (US-tube) nanocomposite, and a dodecylated US-tube (F-US-tube) nanocomposite] in order to evaluate the effects of material composition and porosity on scaffold pore structure, mechanical properties, and marrow stromal cell culture. All scaffolds were produced by a thermal-crosslinking particulate-leaching technique at specific porogen contents of 75, 80, 85, and 90 vol%. Scanning electron microcopy, microcomputed tomography, and mercury intrusion porosimetry were used to analyze the pore structures of scaffolds. The porogen content was found to dictate the porosity of scaffolds. There was no significant difference in porosity, pore size, and interconnectivity among the different materials for the same porogen fraction. Nearly 100% of the pore volume was interconnected through 20microm or larger connections for all scaffolds. While interconnectivity through larger connections improved with higher porosity, compressive mechanical properties of scaffolds declined at the same time. However, the compressive modulus, offset yield strength, and compressive strength of F-US-tube nanocomposites were higher than or similar to the corresponding properties for the PPF polymer and US-tube nanocomposites for all the porosities examined. As for in vitro osteoconductivity, marrow stromal cells demonstrated equally good cell attachment and proliferation on all scaffolds made of different materials at each porosity. These results indicate that functionalized ultra-short single-walled carbon nanotube nanocomposite scaffolds with tunable porosity and mechanical properties hold great promise for bone tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号