首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
张玲 《家庭健康》2014,(1):55-55
PM2.5,也称细颗粒或可入肺颗粒物,是指空气动力学直径小于或等于2.5微米的颗粒物。PM2.5含量高,提示空气质量差。那么,该如何减少PM2.5对人体的损害呢?  相似文献   

2.
大气污染物是由颗粒污染物与气态污染物组成.颗粒污染物是指悬浮在大气中固体与液体颗粒物的总称.国际上将可吸入颗粒物(PM10)分为3类,即粗颗粒物:其空气动力学直径在2.5~10 μm;细颗粒物:其空气动力学直径在0.1~2.5μm;极细颗粒物或超细颗粒物(PM0.1):其空气动力学直径<0.1μm.而我们常说的细颗粒物(PM2.5)是指空气动力学直径≤2.5μm的颗粒物,包括上述的细颗粒物和极细颗粒物.气态污染物主要包括含硫化合物、含氮化合物和碳氧化合物,其中主要是SO2、NO2、CO及O3等.国内外大量流行病学研究证明,大气污染物与许多健康效应直接或间接相关.可对人体多个系统造成危害,尤其是呼吸系统.  相似文献   

3.
PM2.5是空气动力学直径≤2.5μm的颗粒物,最主要的来源是煤炭燃烧、机动车尾气、烟草烟雾等。它体积小、重量轻,在大气中滞留时间长,易吸附空气中的有害物质,能通过呼吸道直接进入肺泡,对人体的呼吸系统、循环系统、生殖系统造成危害,使住院率和死亡率上升。为了减少PM2.5污染带来的危害,我们应以政府部门为主导,尽快完善环境质量标准,多部门合作,通过立法、监督、健康教育、媒体宣传等多渠道预防PM2.5污染造成的危害,改善我们的生活环境。  相似文献   

4.
目的预防致病性微生物通过附着于颗粒物(直径〈10μm)在公共场所进行空气传播。方法利用水滴、水网、水膜和气泡除去空气中有害物质。结果该湿式集中空调净化装置既可以有效地捕集直径0.1—20μm的颗粒物,同时也可以除去气态污染物,每小时净化效率在75.7%-82.5%之间,对公共场所的可吸入颗粒物有明显的净化效率。结论该湿式集中空调净化装置应用在公共场所将大大减少其暴发传染性疾病的可能性。  相似文献   

5.
现在的天气预报中,除了“晴转多云”等气象术语外,还出现了一大串指数:空气质量指数、晨练指数、感冒指数、穿衣指数、紫外线指数…… 空气质量指数 空气质量指数是定量描述空气质量状况的指数。其中,参与空气质量评价的主要污染物为细颗粒物(PM2.5)、可吸入颗粒物(PM10)、二氧化硫(SO2)、二氧化氮(NO2)、臭氧(O3)、一氧化碳(CO)等六项。  相似文献   

6.
可吸入颗粒物对人体健康危害的研究进展   总被引:89,自引:3,他引:86  
指出了有关可吸入颗粒物(PM10)的人体健康效应研究的重要意义,介绍了可吸入颗粒物物的化学成分,空气动力学行为,在人体呼呼中的转归等方面的特性。依据国内外流行病学调查,动物毒理学试验和人体临床观察三个方面的研究结果综合了可吸入颗粒物对人体健康的危害,并提出了今后开展引类研究的建议。  相似文献   

7.
目的:探讨杭州市区大气中细颗粒物(PM2.5)的污染水平和水溶性离子的组成。方法:用中流量大气采样器在市区的3个采样点采集样品,用称重法和离子色谱法分别测得PM2.5的浓度值和水溶性离子的组成。结果:杭州市区2004年4月-2005年3月PM2.5的浓度为17.1~267.0μg/m^3,年平均值为108.2μg/m^3。市中心、市区东部和东北部的年平均值为104.0~112.5μg/m^3。全市区春季PM2.5的平均浓度为116μg/m^3(65.8—193.9μg/m^3),夏季为73.1μg/m^3(17.1~153.5μg/m^3),秋季为114.2μg/m^3(48.7~267.0μg/m^3),冬季为136.0μg/m^3(70.3—233.6μg/m^3)。以美国EPA PM2.5日平均标准衡量,PM2.5浓度的超标率≥83%。从PM2.5中检出的水溶性离子有Fˉ、Clˉ、NO2ˉ、NO3ˉ、SO4^2ˉ、NH4^+、K^+、Na^+、Li^+等。在3个采样点的PM2.5总质量中,Fˉ的年平均质量浓度均为0.1%,Clˉ为1.4%~1.6%,NO3ˉ为6.0%~7.8%,SO4^2ˉ为14.1%-14.7%,Na^+为1.5%-2.7%,K^+为2.1%~3.0%,NH4^+为6.4%~7.7%,总离子合计为32.3%~36.7%。结论:杭州市区PM2.5污染程度在夏季最轻,春秋季次之,冬季最严重。与国内其他省会城市相比,杭州属于污染严重城市。从年度来讲,PM2.5污染水平为东部〉东北部〉市中心。水溶性离子是PM2.5的重要组成部分,SO4ˉ2ˉ、NO3ˉ、NH4^+是含量最高的水溶性离子。  相似文献   

8.
PM2.5引发心血管疾病机制的研究现状   总被引:1,自引:0,他引:1  
PM2.5也称细颗粒物,是指大气总悬浮颗粒物(TSP)中空气动力学直径≤2.5μm的粒子.它来源广泛,对人体的损害大于直径>2.5 μm的颗粒物,因此现在对颗粒物的研究主要集中在PM2.5上.流行病学资料显示,PM2.5与心血管疾病的发病率和死亡率有关,但目前有关这方面的机制研究较少.本文总结了部分相关研究,归纳出3条可能的致病途径.  相似文献   

9.
人人都是吸尘器 PM2.5的杀手本色 PM是“颗粒物质”的英文缩写,PM2.5意指空气动力学直径小于等于2.5微米的悬浮颗粒,也被称为细颗粒物。北京那带着硫黄味道的大雾——实际上被气象学家称为灰霾——主要的形成因素之一就是PM2.5。  相似文献   

10.
<正>每一次吸入一手、二手、三手香烟,每一次没有防护地进入空气污染严重的地方都是在损害你的呼吸系统,慢慢堵塞你的生命通道。千万要保护好你的肺,别让呼吸变成慢性自杀!1按照世界卫生组织(WHO)最新的户外空气质量准则,PM2.5(可入肺颗粒)的年平均浓度的最大值是多少?A.10μg/m3 B.15μg/m3 C.5μg/m3正确答案A PM2.5又称细颗粒物,是指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,对人体健康和大气环境质量  相似文献   

11.
An extensive PM monitoring study was conducted during the 1998 Baltimore PM Epidemiology-Exposure Study of the Elderly. One goal was to investigate the mass concentration comparability between various monitoring instrumentation located across residential indoor, residential outdoor, and ambient sites. Filter-based (24-h integrated) samplers included Federal Reference Method Monitors (PM2.5-FRMs), Personal Environmental Monitors (PEMs), Versatile Air Pollution Samplers (VAPS), and cyclone-based instruments. Tapered element oscillating microbalances (TEOMs) collected real-time data. Measurements were collected on a near-daily basis over a 28-day period during July-August, 1998. The selected monitors had individual sampling completeness percentages ranging from 64% to 100%. Quantitation limits varied from 0.2 to 5.0 microg/m3. Results from matched days indicated that mean individual PM10 and PM2.5 mass concentrations differed by less than 3 microg/m3 across the instrumentation and within each respective size fraction. PM10 and PM2.5 mass concentration regression coefficients of determination between the monitors often exceeded 0.90 with coarse (PM10-2.5) comparisons revealing coefficients typically well below 0.40. Only one of the outdoor collocated PM2.5 monitors (PEM) provided mass concentration data that were statistically different from that produced by a protoype PM2.5 FRM sampler. The PEM had a positive mass concentration bias ranging up to 18% relative to the FRM prototype.  相似文献   

12.
PM2.5     
"PM2,5"有一个容易理解的中文名——细颗粒物,是对空气中直径小于或等于2.5微米的固体颗粒或液滴的总称。这些颗粒如此细小,肉眼是看不到的,它们可以在空气中漂浮数天。人类纤细的头发直径大约是70微米,这就比最大的PM2.5还大了近三十倍。虽然自然过程也会产生PM2.5,但其主要来源还是人为排放。人类既直接排放PM2....  相似文献   

13.
目的了解深圳市部分幼儿园室内空气中可吸入颗粒物浓度。方法于2011年3—7月采用分层抽样抽取深圳市某区11所幼儿园共89间教室,采用DUSTMATE环境粉尘仪对空气中PM10、PM2.5、PM1.0浓度进行测定。结果PM10最大值为0.396 mg/m3,超出GB/T 18883—2002《室内空气质量标准》限值(<0.15 mg/m3)1.64倍;PM2.5最大值为0.137 mg/m3,超出美国EPA标准(<0.035 mg/m3)2.91倍;PM1.0最大值为0.063 mg/m3。工业区幼儿园教室空气中的PM10、PM2.5、PM1.0浓度均高于商业区和居民区,且差异有统计学意义(P<0.05)。结论本次调查的深圳市部分幼儿园室内空气中PM10、PM2.5浓度较高,尤其是工业区幼儿园,应引起重视并采取综合控制措施。  相似文献   

14.
目的了解深圳市某区中小学教室空气可吸入颗粒物状况,为改善中小学教学环境卫生状况提供科学依据。方法分层抽取深圳市某区19所中小学114个教室,采用DUSTMATE环境粉尘仪对PM 10,PM 2.5,PM 1.0进行检测。结果 PM 10最大值为0.418mg/m3,超出国家标准1.79倍;PM 2.5最大值为0.142 mg/m3,超出美国EPA新标准3.06倍;PM 1.0最大值为0.056 mg/m3。工业区中小学教室PM 10,PM 2.5,PM 1.0含量高于商业区和居民区,差异均有统计学意义(P值均<0.05)。小学教室PM 10、PM 2.5合格率均高于中学教室;教室PM 10,PM 2.5含量随着楼层增加而下降,差异均有统计学意义(P值均<0.05)。结论深圳市某区中小学教室颗粒物PM 10,PM 2.5,PM 1.0污染情况严重,应引起高度重视并采取综合控制措施。  相似文献   

15.
The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM10, PM2.5 and PM1 particle fractions. Daily PM10, PM2.5 and PM1 samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m−3 in PM10, 9.0 and 1.4 μg m−3 in PM2.5, and 5.5 and 1.1 μg m−3 in PM1. Average OC/EC ratios in PM10, PM2.5, and PM1 were 7.4, 6.9 and 5.4, respectively.  相似文献   

16.
大气颗粒物PM10和PM2.5中水溶性离子及元素分析   总被引:3,自引:0,他引:3  
目的了解大气颗粒物PM10与PM2.5中水溶性离子及元素的主要组成及其浓度。方法在北京市城区设置1个采样点,于2006年6月16—18日和6月20—22日采集大气颗粒物PM10和PM2.5。采用离子色谱法测定PM10和PM2.5中8种水溶性离子(SO42-、NO3-、Cl-、NH4 、K 、Na 、Ca2 和Mg2 )的浓度;采用"酸提"法测定其中Ca、Mg、Al、As、Zn、Pb、Cu、V、Mn、Co、Fe、Se、Mo、Ni、Cr和Cd的浓度;采用"水提"法测定其中Zn、Pb、Cu、V、Mn、Co、Fe、Ni、Cr和Cd的浓度。结果PM2.5和PM10中8种水溶性离子平均质量浓度范围分别为0.44~9.16μg/m3和0.69~12.61μg/m3。PM2.5中SO42-和NO3-浓度分别占离子总浓度的30.2%和26.5%。PM10中SO42-和NO3-浓度分别占离子总浓度的29.7%和25.6%。PM2.5和PM10中,"酸提"元素平均质量浓度范围分别为1.06~6607.30ng/m3和1.92~12455.50ng/m3;"水提"元素平均质量浓度范围分别为0.31~189.80ng/m3和0.48~187.45ng/m3。结论水溶性离子是大气颗粒物的主要成分之一,值得关注。  相似文献   

17.
Twenty-four-hour averaged PM10 and PM2.5 concentrations were obtained by using 4-liter-per-minute-pumps and impactors in microenvironments of a busy shopping district and a university hospital campus. In both areas, most people live directly adjacent to their worksites--minimizing the need to measure commuting exposure as part of total daily exposure. Co-located samplers were set in indoor microenvironments, the near-ambient zone of the households, and at nearby streetside central ambient monitoring stations. Smoking and use of other indoor PM sources were recorded daily via questionnaires. Consistent with previous studies, smoking and the use of charcoal stoves increased indoor particulate matter levels. The sampled air-conditioned hospital area had substantially lower particle concentrations than outdoors. A simple total exposure model was used to estimate the human exposure. The averaged ratios of co-located PM2.5/PM10 concentrations in various microenvironments are reported for each location. A single daily indoor average PM10 concentration for all households measured in a given sampling day is calculated for correlation analysis. Results showed that day-to-day fluctuations of these calculated indoor PM10 levels correlated well with near-ambient data and moderately well with ambient data collected at the nearby central monitoring site. This implies that ambient monitors are able to capture the daily variations of indoor PM levels or even personal exposure and may help explain the robust association of ambient PM levels and health effects found in many epidemiological studies. Absolute PM exposures, however, were substantially underestimated by ambient monitors in the shopping district, probably because of strong local sources.  相似文献   

18.
19.
While particulate matter with aerodynamic diameters below 10 and 2.5 microns (PM10 and PM2.5) correlate with excess mortality and morbidity, there is evidence for still closer epidemiological associations with sulfate ion, and experimental exposure-response studies suggest that the hydrogen ion and ultrafine (PM0.15) concentrations may be important risk factors. Also, there are measurement artifacts in current methods used to measure ambient PM10 and PM2.5, including negative artifacts because of losses of sampled semivolatile components (ammonium nitrate and some organics) and positive artifacts due to particle-bound water. To study such issues, we are developing a semi-continuous monitoring system for PM10, PM2.5, semivolatiles (organic compounds and NH4NO3), particle-bound water, and other PM2.5 constituents that may be causal factors. PM10 is aerodynamically sorted into three size-fractions: (1) coarse (PM10-PM2.5); (2) accumulation mode (PM2.5-PM0.15); and (3) ultrafine (PM0.15). The mass concentration of each fraction is measured in terms of the linear relation between accumulated mass and pressure drop on polycarbonate pore filters. The PM0.15 mass, being highly correlated with the ultrafine number concentration, provides a good index of the total number concentration in ambient air. For the accumulation mode (PM2.5-PM0.15), which contains nearly all of the semivolatiles and particle-bound water by mass, aliquots of the aerosol stream flow into system components that continuously monitor sulfur (by flame photometry), ammonium and nitrate (by chemiluminescence following catalytic transformations to NO), organics (by thermal-optical analysis) and particle-bound water (by electrolytic hygrometer after vacuum evaporation of sampled particles). The concentration of H+ can be calculated (by ion balance using the monitoring data on NO3-, NH4+, and SO4=).  相似文献   

20.
于2015年秋季(1月)、夏季(8月)对贵阳市五个区的大气颗粒物(PM10、PM2.5)进行了监测研究。结果发现,贵阳市大气颗粒物污染很轻,8月和11月PM10、PM2.5的超标率都为0;大气颗粒物PM10和PM2.5浓度季节变化大,11月PM10和PM2.5浓度明显大于8月;2个月的监测数据显示5个区PM10和PM2.5日均值浓度变化趋势基本一致,5个区中南明区的PM10和PM2.5浓度最高,花溪区的PM10和PM2.5浓度最低。PM10中PM2.5比重较大,PM2.5粒径小,对人体健康危害很大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号