首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
本文利用系数倍率法消除盐酸小蘖碱、黄芩甙、大黄浸膏及辅料紫外吸收的相互干扰,从而不经分离同时分别测定三黄片中盐酸小蘖碱、黄芩甙的含量。测定盐酸小蘖碱的波长对为267nm,291nm和k值为1.409;黄芩甙的波长对为277nm,250nm和k值为1.136。盐酸小蘖碱、黄芩甙的平均回收率分别为;98.62%—98.37%;变异系数分别为:2.75%、1.36%(n=6)  相似文献   

2.
目的:建iHPLC法测定西羚片中盐酸小檗碱的含量.方法:采用HPLC法测定盐酸小檗碱含量,选用C18色谱柱,以乙腈-0.1%磷酸溶液一十二烷基磺酸钠(50:50:0.1g)为流动相;检测波长为265nm.结果:盐酸小檗碱在20~200μg/ml范围内线性关系良好(r=0.9999),平均回收率为98.93%,RSD=0.973%(n=6).结论:该方法简便、灵敏、准确,可用于西羚片的质量控制.  相似文献   

3.
HPLC法测定速效止泻胶囊中盐酸小檗碱和没食子酸的含量   总被引:2,自引:0,他引:2  
建立以高效液相色谱法测定速效止泻胶囊中盐酸小檗碱和没食子酸含量测定的方法.采用Diamonsil C18色谱柱,柱温:35℃.测定盐酸小檗碱的流动相为乙腈-0.033mol·L-1磷酸二氢钾溶液(30:70),检测波长:265nm;测定没食子酸的流动相为0.2%甲醇的乙腈溶液-含0.1%三乙胺的0.1%磷酸水溶液(4:96),检测波长:270nm.盐酸小檗碱在4.482~31.374μg范围内呈良好的线性关系,r=0.9999,平均回收率为100.44%,RSD=1.1%(n=9).没食子酸在2.966~14.830μg范围内呈良好的线性关系,r=0.9998,平均回收率为100.23%,RSD=1.6%(n=9).该方法简单、快速、准确、重现性好,能够较好地控制该产品的质量.  相似文献   

4.
曾三平  雷鹏 《中国药事》2007,21(8):598-600
建立香连制剂中盐酸小檗碱、盐酸巴马汀和盐酸药根碱含量测定方法。采用高效液相法测定香连片(丸)中盐酸小檗碱、盐酸巴马汀和盐酸药根碱含量,色谱柱:Diamonsil C18;流动相:0.2 mol.L-1磷酸二氢钠(用磷酸调节pH至3.0)-乙腈(70∶30);流速:1 mL.min-1;柱温:30℃;检测波长:345 nm。盐酸小檗碱在10.2~510 ng范围内线性关系良好,r=0.9997,平均回收率为98.43%,RSD=2.0%;盐酸巴马汀在5.0~250 ng范围内线性关系良好,r=0.9998,平均回收率为98.51%,RSD=2.4%;盐酸药根碱在4.8~240 ng范围内线性关系良好,r=0.9992,平均回收率为97.57%,RSD=2.7%。该方法简便可行、重复性好,可更好评价香连片(丸)质量。  相似文献   

5.
TLCS法测定健脾和胃颗粒中盐酸小蘖碱的含量   总被引:2,自引:2,他引:0  
赵刚  吴新安  方云  汪天涯 《安徽医药》2006,10(7):508-508
目的建立健脾和胃颗粒中盐酸小蘖碱的含量测定方法。方法以苯-醋酸乙酯-甲醇-异丙醇-浓氨水(6∶3∶1.5∶1.5∶0.5)为展开剂,另槽加等体积浓氨试液,以425 nm为λS,650 nm为λR进行反射式锯齿形扫描。结果盐酸小蘖碱在0.26~1.3μg范围内呈良好的线性关系(r=0.998),平均回收率为98.15%,RSD=1.52%。结论该法操作简便、快捷、重现性好。  相似文献   

6.
目的建立妇科止带片中盐酸小檗碱含量测定方法.方法采用高效液相色谱法,使用C18柱,流动相为0.067 mol/L磷酸二氢钾溶液-乙腈-十二烷基磺酸钠溶液(3002703.3),紫外检测波长266 nm.结果盐酸小檗碱线性范围0.254~1.270 μg(r=0.9995),平均回收率97.09 %(RSD =1.23 %,n=6).结论所建立的方法稳定可靠灵敏、准确、简便,可用于该制剂的质量控制.  相似文献   

7.
ICP-MS分析参芪扶正注射液中14种微量元素的含量   总被引:2,自引:0,他引:2  
目的:建立复方二仙汤中盐酸小檗碱和总生物碱的含量测定方法.方法:小檗碱的含量测定应用Hy-persil-BDS C18色谱柱,甲醇-0.02 mol/L NaH2PO4-0.1 mol/L三乙胺(40:60:2)为流动相,检测波长为345nm;采用可见分光光度法于420 nm波长处测定总生物碱的含量.结果:盐酸小檗碱的线性范围为0.51~10.10μg/mL,r=0.999 9,回收率100.07%,RSD为0.4%;总生物碱线性范围为8.0~24.0μg/mL,r=0.999 8,回收率100.46%,RSD为0.58%.结论:该法操作简便、快速且结果准确,可用于该复方的质量控制.  相似文献   

8.
马书太 《今日药学》2009,19(5):42-44
目的 建立一种测定前列舒通片中盐酸小檗碱含量的HPLC方法.方法 色谱条件为C18色谱柱(4.6 mm×250 mm,5 μm); 0.1%磷酸溶液-乙腈(75:25)为流动相;流速为1.0 ml/min;检测波长为270 nm.结果 盐酸小檗碱进样量在0.123 ~ 0.82 μg之间呈良好的线性关系(r=0.9999).平均回收率为99.52%,相对标准差(RSD)=1.35%(n = 6).结论 本方法操作简单,具有专属性强,干扰小的优点,可有效控制该制剂的内在质量.  相似文献   

9.
目的建立同时测定芩连胶囊中黄芩苷和盐酸小檗碱含量的高效液相色谱法。方法采用Phenomenex C18色谱柱(250 mm×4.6 mm,4μm),流动相为乙腈-0.4%磷酸溶液梯度洗脱,流速为1 mL/min,检测波长为265 nm。结果黄芩苷进样量在0.04~2.22μg范围内与峰面积线性关系良好(r=1),平均回收率为99.02%,RSD=1.09%(n=6);盐酸小檗碱进样量在0.04~2.04μg范围内与峰面积线性关系良好(r=1),平均回收率为99.13%,RSD=1.60%(n=6)。结论该方法简便可行,准确快速,可用于同时测定芩连胶囊中黄芩苷和盐酸小檗碱的含量。  相似文献   

10.
《中国药房》2015,(15):2145-2147
目的:建立同时测定复方黄连洗剂中黄芩苷、盐酸小檗碱含量的方法。方法:采用反相高效液相色谱法。色谱柱为Kromasil C18,流动相为0.2%磷酸水溶液-乙腈(75∶25,V/V),流速为1.0 ml/min,检测波长为275 nm,柱温为30℃,进样量为10μl。结果:黄芩苷、盐酸小檗碱进样量分别在0.078 8~3.153μg(r=0.999 2)和0.026 2~0.786μg(r=0.999 8)范围内与峰面积呈良好的线性关系;精密度、稳定性、重复性试验的RSD均≤1.66%;平均加样回收率分别为98.05%(RSD=1.61%,n=9)、99.18%(RSD=1.25%,n=9)。结论:该方法操作简便、结果准确,可用于复方黄连洗剂中黄芩苷和盐酸小檗碱的含量测定。  相似文献   

11.
12.
13.
Clinical and in vitro investigations were carried out to test the efficacy of gut lavage, hemodialysis, and hemoperfusion in the treatment of poisoning with paraquat or diquat. In a patient suffering from diquat intoxication 130 times more diquat was removed by gut lavage 30 h after ingestion than was removed by complete aspiration of the gastric contents.Determination of in vitro clearances for paraquat and diquat by hemodialysis showed that, at serum concentrations of 1–2 ppm, such as are frequently encountered in poisoning in man, toxicologically relevant quantities of herbicide cannot be removed from the body. At a concentration of 20 ppm, on the other hand, hemodialysis proved to be effective, the clearance being 70 ml/min at a blood flow rate of 100 ml/min. The efficacy of hemoperfusion with coated activated charcoal was on the whole better. Especially at concentrations around 1–2 ppm, the clearance values for hemoperfusion were some 5–7 times higher than those for hemodialysis.In a patient suffering from paraquat poisoning, both hemodialysis as well as hemoperfusion were carried out. The in vitro results could be confirmed: At serum concentrations of paraquat less than 1 ppm no clearance could be obtained by hemodialysis while by hemoperfusion with activated charcoal quite high clearance values were measured and the serum level dropped down to zero.
Zusammenfassung Klinische Untersuchungen und Laboratoriumsversuche wurden durchgeführt, um die Wirksamkeit von Darmspülung, Hämodialyse und Hämoperfusion bei Paraquat- und Deiquat-Vergiftungen zu prüfen.Bei einem Patienten wurde 30 Std nach Deiquat-Aufnahme durch Darmspülung 130mal mehr Deiquat entfernt als durch vollständige Aspiration des Mageninhaltes. In vitro-Versuche ergaben, daß bei Blutserumkonzentrationen von 1–2 ppm, die bei Vergiftungen oft gemessen werden, durch Hämodialyse keine toxikologisch relevanten Paraquat- oder Deiquat-Mengen entfernt werden können. Dagegen erwies sich die Hämodialyse bei 20 ppm und einer Blutumlaufgeschwindigkeit von 100 ml/min mit einer Clearance von 70 ml/min als wirksam. Die Hämoperfusion mit beschicheter Aktivkohle war in diesen Versuchen aber eindeutig überlegen, denn insbesondere bei Konzentrationen um 1–2 ppm waren die Clearance-Werte 5–7mal höher als bei der Hämodialyse.Die in vitro-Ergebnisse wurden bei einem Patienten mit einer Paraquat-Vergiftung bestätigt: Bei Konzentrationen unter 1 ppm war die Hämodialyse wirkungslos, während durch Hämoperfusion relativ hohe Clearance-Werte erreicht wurden, so daß der Serumspiegel rasch unter die Nachweisgrenze abfiel.
  相似文献   

14.
15.
This study describes a new approach for organophosphorous (OP) antidotal treatment by encapsulating an OP hydrolyzing enzyme, OPA anhydrolase (OPAA), within sterically stabilized liposomes. The recombinant OPAA enzyme was derived from Alteromonas strain JD6. It has broad substrate specificity to a wide range of OP compounds: DFP and the nerve agents, soman and sarin. Liposomes encapsulating OPAA (SL)* were made by mechanical dispersion method. Hydrolysis of DFP by (SL)* was measured by following an increase of fluoride ion concentration using a fluoride ion selective electrode. OPAA entrapped in the carrier liposomes rapidly hydrolyze DFP, with the rate of DFP hydrolysis directly proportional to the amount of (SL)* added to the solution. Liposomal carriers containing no enzyme did not hydrolyze DFP. The reaction was linear and the rate of hydrolysis was first order in the substrate. This enzyme carrier system serves as a biodegradable protective environment for the recombinant OP-metabolizing enzyme, OPAA, resulting in prolongation of enzymatic concentration in the body. These studies suggest that the protection of OP intoxication can be strikingly enhanced by adding OPAA encapsulated within (SL)* to pralidoxime and atropine.  相似文献   

16.
We report herein the condensation of 4,7-dichloroquinoline (1) with tryptamine (2) and D-tryptophan methyl ester (3) . Hydrolysis of the methyl ester adduct (5) yielded the free acid (6) . The compounds were evaluated in vitro for activity against four different species of Leishmania promastigote forms and for cytotoxic activity against Kb and Vero cells. Compound (5) showed good activity against the Leishmania species tested, while all three compounds displayed moderate activity in both Kb and Vero cells.  相似文献   

17.
In order to find out the values of the steroid resources for the future use. the compositions and contents of steroidal sapogenins from 13 domestic plants have been investigated. As a result,Dioscorea nipponica, D. quinqueloba andSmilax china were found to have large amount of diosgenin. And pennogenin inTrillium kamtschaticum andParis verticillata, yuccagenin inAllium fistulosum, hecogenin inAgave americana and neochlorogenin inSolanum nigum were appeared to be major steroidal sapogenins.  相似文献   

18.
19.
Abstract

The uptake of metals from food and water sources by insects is thought to be additive. For a given metal, the proportions taken up from water and food will depend both on the bioavailable concentration of the metal associated with each source and the mechanism and rate by which the metal enters the insect. Attempts to correlate insect trace metal concentrations with the trophic level of insects should be made with a knowledge of the feeding relationships of the individual taxa concerned. Pathways for the uptake of essential metals, such as copper and zinc, exist at the cellular level, and other nonessential metals, such as cadmium, also appear to enter via these routes. Within cells, trace metals can be bound to proteins or stored in granules. The internal distribution of metals among body tissues is very heterogeneous, and distribution patterns tend to be both metal and taxon specific. Trace metals associated with insects can be both bound on the surface of their chitinous exoskeleton and incorporated into body tissues. The quantities of trace meals accumulated by an individual reflect the net balance between the rate of metal influx from both dissolved and particulate sources and the rate of metal efflux from the organism. The toxicity of metals has been demonstrated at all levels of biological organization: cell, tissue, individual, population, and community. Much of the literature pertaining to the toxic effects of metals on aquatic insects is based on laboratory observations and, as such, it is difficult to extrapolate the data to insects in nature. The few experimental studies in nature suggest that trace metal contaminants can affect both the distribution and the abundance of aquatic insects. Insects have a largely unexploited potential as biomonitors of metal contamination in nature. A better understanding of the physico-chemical and biological mechanisms mediating trace metal bioavailability and exchange will facilitate the development of general predictive models relating trace metal concentrations in insects to those in their environment. Such models will facilitate the use of insects as contaminant biomonitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号