首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
PC12 cells are a useful model system for studying neuronal apoptosis. Like neurons, they undergo apoptosis when deprived of trophic support. Involvement of caspases [interleukin 1β-converting enzyme (ICE)-related proteases] has been implicated in apoptosis induced by various stimuli in many cell types, including neurons. In the present study we investigated the need for caspases participation in apoptosis induced by growth factor deprivation in naive and neuronal PC12 cells. For this purpose we generated PC12 cell lines that consistently express the viral caspases inhibitor genes p35 or crmA, and analyzed their susceptibility to trophic factor deprivation. We also examined the effects of cell-permeable peptide inhibitors of caspases. Our results showed that broad-spectrum inhibitors of the caspases, namely the baculovirus p35 gene and the peptide benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, effectively inhibit the death of both naive and neuronal PC12 cells. However, caspase-1 (ICE)-specific inhibitors, namely the peptides Ac-Try-Val-Ala-Asp-chloromethylketone and Ac-Try-Val-Ala-Asp-aldehyde, as well as crmA, were much less effective. These findings demonstrate that caspases, but not caspase-1, are needed for apoptosis induced by trophic factor deprivation in both naive and neuronal PC12 cells. Northern and Western blot analyses showed that PC12 cells express caspase-3. We therefore examined the involvement of caspase-3 in the death process of trophic factor-deprived PC12 cells. Our results showed that the pro-caspase-3 and its substrate poly(ADP-ribose)polymerase are cleaved at similar rates in serum-deprived PC12 cells. Moreover, cell lysates prepared from these cells possess caspase-3-like activity, as determined by their ability to cleave the fluorogenic peptide substrate Ac-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin. These findings strongly suggest that caspase-3 or caspase-3-like proteases are activated in trophic factor-deprived PC12 cells. J. Neurosci. Res. 50:69–80, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Apoptosis is induced in cells via distinct pathways, which may differ according to various stimuli and different cell types. One apoptotic stimulus is the activation of receptors such as the p55 tumor necrosis factor (TNF) receptor. These receptors transduce their apoptotic signals via a cytoplasmic region termed the death domain. Here we investigated the apoptotic pathway induced by overexpression of the intracellular domain of p55 TNF receptor (p55-IC) in a neuronal model system consisting of PC12 cells. Using the tetracycline-regulated transactivator system, which allows controlled gene expression, we show that overexpression of p55-IC induces apoptosis in both naive and neuronal PC12 cells. The apoptosis-inducing effect of p55-IC is blocked by the expression of bcl-2, suggesting that p55-IC induces apoptosis in PC12 cells via a pathway controlled by bcl-2. The need for caspases in the p55-IC-induced cell death effect in naive and neuronal PC12 cells was studied by examining the effects of broad-spectrum and specific inhibitors of caspases as well as expression of antisense caspase-2 RNA. The broad-spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone blocked p55-IC-induced cell death in both naive and neuronal cells, suggesting that caspases are needed for this process in both cell types. Caspase-1-like proteases are most probably not involved in the process since neither expression of crmA nor treatment with the caspase-1-specific peptide inhibitor Ac-Try-Val-Ala-Asp-aldehyde had any protective effect. Interestingly, expression of antisense caspase-2 RNA blocked the p55-IC-induced cell death in naive but not in neuronal PC12 cells, whereas the caspase-3-like specific inhibitor Ac-Asp-Glu-Val-Asp-aldehyde partially inhibited this death in neuronal but not in naive cells. These results suggest that the apoptosis-inducing effect of p55-IC requires different caspases in naive and neuronal PC12 cells. J. Neurosci. Res. 52:380–389, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Xu R  Liu J  Chen X  Xu F  Xie Q  Yu H  Guo Q  Zhou X  Jin Y 《Brain research》2001,899(1-2):10-19
6-Hydroxydopamine (6-OHDA) is a neurotoxin used in the induction of experimental Parkinson's disease in both animals and PC12 cells, which are derived from rat pheochromocytoma tumors and have many properties similar to dopamine neurons. Biochemical and molecular approaches have shown that low doses of 6-OHDA induce apoptosis in PC12 cells and, in the processing of apoptosis, caspases are crucial mediators, and caspase inhibition is sufficient to rescue PC12 cells from apoptosis induced by 6-OHDA. However, because this caspase inhibition targets multiple caspases, it is not known whether a single caspase is primarily responsible for effecting cell death in this model. To assess the particular member (caspase-3) of the ced-3 family relevant to cell death and to position their activation within the apoptotic pathway, we constructed a hammerhead ribozyme directed against rat caspase-3, which could downregulate the expression of caspase-3 in vitro and in vivo, and transfer to PC12 cells. The results show that the ribozymes against caspase-3 could protect PC12 cells from apoptosis induced by low doses of 6-OHDA. The PC12 cell transfected with the ribozymes shows a significant decrease in caspase-3 activity compared with control cells at various time points. Parallel to the reduced caspase-3 protease activity, similar decreased levels of apoptotic cells and DNA fragmentation were also assessed by staining with Hoechst 33258 and ELISA, respectively. Overexpression of p35, a general caspase inhibitor, also protected PC12 cells from apoptosis. These results confirm that caspases play an important role in 6-OHDA-induced PC12 cell apoptosis and indicate that caspase-3 itself is one of the crucial mediators of neurotoxin-induced PC12 cell apoptosis.  相似文献   

4.
Pycnogenol protects neurons from amyloid-beta peptide-induced apoptosis   总被引:3,自引:0,他引:3  
Neuronal apoptosis is one of the pathological features of Alzheimer's disease (AD). Morphological pathology reveals that neuronal apoptosis is associated with senile plaques containing amyloid-beta peptide (Abeta) in AD brains. Reactive oxygen species (ROS) has been proposed to be involved in the apoptotic mechanism of Abeta-mediated neurotoxicity. In the present study, using a rat pheochromocytoma (PC12) cell line, we investigated the effect of Pycnogenol (PYC), a potent antioxidant and ROS scavenger, on Abeta(25-35)-induced apoptosis and ROS generation. We used vitamin E, a known antioxidant agent, to verify the effect of PYC. Abeta(25-35)-induced apoptosis in PC12 cells was demonstrated by: (1) a dose-dependent loss of cell viability; (2) a time- and dose-dependent increase in the apoptotic cells; (3) an induction of DNA fragmentation; and (4) an increase in caspase-3 activity and cleavage of poly (ADP-ribose) polymerase (PARP). Our data showed that a significant increase in ROS formation preceded apoptotic events after PC12 cells were exposed to Abeta(25-35). We further found that PYC not only suppressed the generation of ROS but also attenuated caspase-3 activation, DNA fragmentation, PARP cleavage, and eventually protected against Abeta-induced apoptosis. Vitamin E also suppressed cell death and caspase-3 activation induced by Abeta(25-35). Taken together, these results suggest that ROS may be involved in Abeta-induced apoptosis in PC12 cells. They further suggest that PYC can reduce apoptosis, possibly by decreasing free radical generation in PC12 cells.  相似文献   

5.
6.
Tumor necrosis factor-alpha (TNFalpha) may play a role in at least some of the neuronal death that occurs following brain insults or in neurodegenerative diseases. It is therefore important to characterize the mechanism underlying apoptosis induced by TNFalpha in neuronal cells and to identify factors capable of protecting neurons from this death. In the present study, we characterized the apoptotic effect of TNFalpha in PC12 cells, a model system commonly used for studying neuronal apoptosis, and examined the role of Bcl-2 and caspases in this process. We show that TNFalpha induces apoptosis in both naive and primed PC12 cells. The TNFalpha-induced apoptosis was inhibited by nerve growth factor (NGF) but not by insulin. These findings suggest that the apoptotic effect of TNFalpha can be inhibited by trophic factors and that the survival-promoting effect of NGF is mediated by a specific pathway not shared by all tyrosine kinase receptors. The effect of Bcl-2 on TNFalpha-induced apoptosis was examined in PC12 cells overexpressing Bcl-2. These cells were resistant to TNFalpha-induced apoptosis, suggesting that the apoptotic effect of TNFalpha in PC12 cells is mediated via a pathway controlled by Bcl-2. Examination of the role of caspase-3 like activity in TNFalpha-induced apoptosis showed that caspase-3-like proteases are activated, and their substrate, poly (ADP-ribose) polymerase, is cleaved following TNFalpha treatment. In addition, the broad-spectrum inhibitor of caspases, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK), was found to inhibit the TNFalpha-induced apoptosis of PC12 cells. These results suggest that caspases are activated following TNFalpha treatment and are needed for TNFalpha-induced apoptosis in PC12 cells.  相似文献   

7.
Oxidative stress is thought to be a major contributor to the progress of the Parkinson's Disease (PD) because of the high vulnerability of dopaminergic cells against oxidative stress. The present work demonstrates that with the expression of the baculovirus p35 gene, PC12 cells could gain a high resistance against oxidative toxicants, hydrogen peroxide (H(2)O(2)) and 6-hydroxydopamine (6-OHDA). The DNA fragmentation analysis showed that PC12 cells underwent apoptosis after exposure to H(2)O(2) or 6-OHDA, while PP35 cells, a p35-expressing PC12 cell line, did not. Flow cytometric analysis showed that treatment with 150 microM H(2)O(2) or 120 microM 6-OHDA for 24 h caused 52.86% or 66.36% apoptotic cell, respectively, in PC 12 cells, but only 4.26% or 5.80% in PP35 cells. The cell viability measured by 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay indicated that H(2)O(2) and 6-OHDA induced a dose-dependent cell death on PC12 cells that were greatly remitted on PP35 cells. The viability of PP35 cells was even stronger than that of PC12 cells protected by glial cell line deprived neurotrophic factor (GDNF). The surviving PP35 cells remained normal cell morphology and showed positive with tyrosine hydroxylase (TH) immunocytochemical staining. These results indicate that baculovirus p35 gene possesses remarkable ability to rescue PC12 cells from death in experimental paradigms associated with oxidative stress.  相似文献   

8.
By using flow-cytometric analysis, we examined the involvement of p53, c-Myc, Bcl-2 and Bax in the glutamate-induced cell death in cultured cortical neurons. The activities of caspase-1-like and caspase-3-like proteases were also measured after the glutamate treatment. The apoptosis rate of the cells increased after 12 h and 24 h treatment with glutamate. The temporal profile of p53, c-Myc, Bcl-2, Bax expression and caspases activation after glutamate treatment suggest that Bcl-2, c-Myc and caspase-3 play important roles in the excitotoxic neuronal cell death. The down-regulation of Bcl-2 may be an important early stage event, which may cause the activation of caspase-3. c-Myc is also involved in the process of apoptosis though its precise role remains elusive. bFGF exhibited the capability to antagonize the neuronal apoptosis caused by glutamate. The antiapoptotic potential of bFGF may result from its attenuating effect on the down-regulation of Bcl-2 induced by glutamate and, subsequently, blockade of apoptosis cascade. This may provide a possible explanation for its neuroprotective effect against ischemic cell death.  相似文献   

9.
Amyloid-β (Aβ) peptide-induced neurotoxicity is typically associated with cell death through mechanisms not entirely understood. Here, we investigated stress signaling events triggered by soluble Aβ in differentiated rat neuronal-like PC12 cells. Morphologic evaluation of apoptosis confirmed that Aβ induced nuclear fragmentation that was prevented by pre-treatment with the antiapoptotic bile acid tauroursodeoxycholic acid (TUDCA). In addition, Aβ exposure triggered an early signaling response by the endoplasmic reticulum (ER) and caspase-12-mediated apoptosis, which, however, was independent of the ER-stress pathway. Furthermore, ER stress markers, including GRP94, ATF-6α, CHOP, and eIF2α, were strongly downregulated by Aβ, independent of protein degradation, and partially restored by TUDCA. Calpain inhibition prevented caspase-12 activation and reduced levels of ATF-6α. Importantly, Aβ-induced GRP94 downregulation was related to protein secretion and partially rescued through inhibition of the secretory pathway by geldanamycin and brefeldin. In conclusion, we showed that the ER is a proximal stress sensor for soluble Aβ-induced toxicity, resulting in caspase-12 activation and cell death in PC12 neuronal cells. Moreover, ER chaperone GRP94 secretion was associated with Aβ-induced apoptotic signaling. These data provide new information linking apoptotic properties of Aβ peptide to distinct subcellular mechanisms of toxicity. Further characterization of this signaling pathway is likely to provide new perspectives for modulation of amyloid-induced apoptosis.  相似文献   

10.
目的:探讨PC12细胞缺氧/再给氧损伤的信号转导机理。方法:培养的PC12细胞先缺氧(95%N2/5%CO2)6h,然后重新给氧,观测不同时间点细胞的存活率和caspase-3的活性;用MTT法测存活率,caspase-3检测试剂盒测caspase-3活性。用p38拮抗剂SB203580孵育细胞2h,之后缺氧/再给氧,观察SB203580对细胞存活率和caspase-3活性的影响。结果:PC12细胞缺氧/再给氧后caspase-3活性明显增加并使细胞存活率下降,SB203580明显降低缺氧/复氧后caspase-3的活性并使细胞死亡减少。结论:PC12细胞缺氧/再给氧后至少可以通过激活p38、caspase-3信号分子诱导PC12细胞死亡。  相似文献   

11.
目的 研究CoCl2处理拟缺氧损伤条件下低氧诱导因子1α(HIF-1α)过表达对PC12神经细胞凋亡状态的影响.方法 分化后的PC12细胞分为2组,实验组转染pEGFPC1-HIF-1α△ODD表达质粒,对照组转染pEGFPC1.CoCl2处理模拟细胞缺氧损伤条件;Western blotting检测2组细胞常氧和缺氧时HIF-1α的表达;Hochest33342染色、流式细胞仪和Caspase-3活性检测3种方法观察神经细胞拟缺氧损伤时HIF-1α的过表达对细胞凋亡的影响.结果 50 μmol/L及100μmol/L CoCl2处理PC12细胞12 h、24 h可以诱导细胞拟缺氧损伤模型,实验组细胞常氧和缺氧时HIF-1α表达均高于对照组.Hochest33342染色结果提示实验组凋亡细胞明显少于对照组细胞.50 μmol/L CoCl2处理24 h后,流式细胞仪结果显示实验组细胞凋亡率为(5.41±3.29)%,对照组为(8.35±2.59)%,差异有统计学意义(P<0.05).加入50μmol/LCoCl2处理12 h后,实验组细胞中Caspase-3活性的增加倍数明显低于实验组细胞.结论 适量CoCl2处理的神经细胞系拟缺氧损伤模型中,HIF-1α的过表达对细胞凋亡有显著的抑制作用.  相似文献   

12.
The treatment of PC12 cells with H2O2 (100-500 microM) resulted in typical apoptotic changes including fragmentation and condensation of nuclei, and DNA fragmentation observed as DNA ladder. H2O2-induced apoptosis was associated with activation of caspase-3 as assessed by cleavage of specific fluorogenic substrate peptide and processing of procaspase-3 and poly(ADP-ribose) polymerase. However, formation of ceramide, which often locates upstream of caspase-3, was not observed. The inhibitory peptide relatively specific for caspase-3, z-DEVD-FMK and non-selective caspase inhibitor z-VAD-FMK inhibited activation of caspase-3 and apoptotic cell death. However, the relatively specific inhibitors, Ac-YVKD for caspase-1 and Ac-IETD for caspase-8/6, did not affect the occurrence of apoptotic cell death. As an upstream activation of caspase-3, induction of cytochrome c release followed by processing of procaspase-9 was observed by Western blotting, although the formation of intracellular ceramide was not observed. On the other hand, in PC12 cells overexpressing Bcl-2, the number of apoptotic cells was markedly decreased and activation of both caspases-9 and -3 was prevented. These results suggest that cytochrome c and caspase-9 initiate the activation of executor caspase-3 in H2O2-treated PC12 cells, and that Bcl-2 inhibits H2O2-induced release of cytochrome c from mitochondria and then proteolytic processing of procaspase-9.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) p38 plays pivotal role in cell proliferation, differentiation, and apoptosis when cysteine protease caspase induces apoptosis in different cell systems. SB 203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1 H-imidazole) is widely used as a specific inhibitor of p38 MAPK, and prevents apoptosis induced by various agents. The effect of SB 203580 on nitric oxide(NO)- or peroxynitrite-induced cell death is not known. Western blotting results indicate that p38 MAPK was activated significantly in NO- or peroxynitrite-induced cell death in a time-dependent manner, and subsequently this cell death was markedly inhibited by SB 203580, as determined by fluorescence-activated cell sorting (FACS)-can analyzer. Furthermore, NO/peroxynitrite-induced caspase-3 activation was notably inhibited by SB 203580, however, phosphorylation of either p38 MAPK or p44/42 was not influenced by SB 203580. Thus, it is likely that SB 203580 prevents NO/peroxynitrite-induced cell death by inhibiting caspase-3 activation in PC-12 cells.  相似文献   

14.
Reactive oxygen species (ROS) are supposed to play an important role in hypoxia- and ischemia/reperfusion-mediated neuronal injury with the characteristics of apoptosis. There are many reports showing that cobalt chloride (CoCl(2)) could mimic the hypoxic responses in some aspects including production of ROS in cultured cells. The cytotoxicity of CoCl(2) and its molecular mechanisms have yet to be elucidated. We report that CoCl(2) triggered neuronal PC12 cells apoptosis in a dose- and time-dependent manner. Apoptosis was demonstrated by morphological changes and DNA fragmentation, and was dependent on macromolecular synthesis. Apoptosis was also confirmed by the decrease of the expression of Bcl-X(L). To our knowledge, this is the first documentation of the apoptotic induction of CoCl(2) on PC12 cells. Furthermore, ROS production in PC12 cells was increased during CoCl(2) treatment. Antioxidants, which could inhibit ROS production, significantly blocked CoCl(2)-induced apoptosis, suggesting that apoptosis is mediated by ROS production. We also observed a significant increase of the DNA-binding activity of AP-1 in response to CoCl(2) and this increase was blocked by antioxidants, showing that CoCl(2)-induced apoptosis is accompanied by ROS-activated AP-1. CoCl(2)-treated PC12 cells may serve as an in vitro model for studies of molecular mechanisms in ROS-linked neuronal disorders.  相似文献   

15.
目的 探讨缺血后处理对PC12细胞缺血再灌注损伤引起的细胞凋亡的作用及其作用机制。方法 将PC12细胞分为3组:正常组、缺血再灌注组、缺血后处理组。缺血再灌注组予以糖氧剥夺12 h后正常培养,缺血后处理组经糖氧剥夺12 h后予以3个循环的正常培养(10 min)→糖氧剥夺(10 min),再正常培养12 h后通过Hoechst染色检测各组细胞的凋亡情况,应用Westernblot 检测各组细胞Caspase-3活化蛋白及磷酸化NF-κB/p65蛋白表达水平,采用RT-PCR检测各组细胞NF-κB及Caspase-3 mRNA表达水平。结果 Hoechst染色显示缺血后处理可降低缺血再灌注引起的细胞凋亡; 与对照组相比, 缺血再灌注组磷酸化NF-κB/p65和Cleaved caspase-3的蛋白表达水平高; 缺血后处理组磷酸化NF-κB/p65和Cleaved caspase-3的蛋白表达水平明显低于缺血再灌注组; NF-κB和Caspase-3的mRNA表达趋势与蛋白表达基本一致。结论 缺血后处理可以减轻缺血再灌注损伤引起的PC12细胞凋亡,这可能与NF-κB/p65信号通路有关。  相似文献   

16.
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.  相似文献   

17.
Y Banno  S Wang  Y Ito  T Izumi  S Nakashima  T Shimizu  Y Nozawa 《Neuroreport》2001,12(10):2271-2275
Exposure to hydrogen peroxide induced considerable activation of phospholipase D (PLD) in rat pheochromocytoma PC12 cells. This PLD activation was potentiated by orthovanadate and okadaic acid, suggesting that tyrosine kinase and serine/threonine kinase are involved. Furthermore, H2O2-induced PLD activation was partially inhibited by either MEK1 inhibitor (PD98059) or p38 MAP kinase inhibitor (SB203580), but a combination of both inhibitors resulted in nearly 80% suppression. The major isozyme was found to be PLD2 in PC12 cells by Western blotting analysis. When the PLD2-transfected COS-7 cells were exposed to H2O2, the PLD activation was markedly inhibited by the combined pretreatment with PD98059 and SB203580. To our knowledge, this study is the first demonstration that both ERK1/2 and p38 MAP kinase are involved in the PLD2 activation in PC12 cells exposed to H2O2.  相似文献   

18.
Previous work has demonstrated that 6-hydroxydopamine (6-OHDA) induces apoptosis in PC12 cells. The goal of the present study was to investigate the mechanisms underlying the protection by neurotrophin-3 (NT-3) against 6-OHDA-induced apoptosis in PC12 cells. Treatment of PC12 cells with 6-OHDA resulted in activation of caspase-3 and subsequent apoptosis, as detected by TUNEL staining. In addition, Akt phosphorylation was decreased following 6-OHDA treatment. Pretreatment with NT-3 reduced the percentage of apoptotic cells and caspase-3 activity induced by 6-OHDA and suppressed the cleavage of caspase-3 and Poly(ADP-ribose) polymerase (PARP) with a significant decrease in cell viability. Moreover, Akt phosphorylation was enhanced and 6-OHDA-induced chromatin condensation was suppressed by NT-3. Such NT-3-evoked suppression in chromatin condensation was reversed by anti-TrkA antibody receptor blockade. Further study revealed that LY294002, an inhibitor of PI3-kinase (a molecule upstream of Akt), enhanced 6-OHDA-induced apoptosis. These data indicate that NT-3 prevents 6-OHDA-induced apoptosis in PC12 cells via activation of PI3-kinase/Akt pathway.  相似文献   

19.
We previously found that the atypical antipsychotic drugs (APDs) clozapine, olanzapine, quetiapine, and risperidone reduce PC12 cell death induced by hydrogen peroxide, N-methyl-4-phenylpyridinium ion, or beta-amyloid peptide (Abeta(25-35)). Such neurotoxic substances have in common the capability of causing oxidative stress. Atypical APDs have been used in treating schizophrenia and in treating psychotic symptoms of patients with Alzheimer's disease (AD), in which Abeta is involved by causing oxidative stress. Therefore, we hypothesized that atypical APDs might alleviate oxidative stress in PC12 cells, thus protecting them from apoptosis. PC12 cells were seeded in plates or chambers for 24 hr and cultured for another 24 hr with olanzapine or quetiapine in the medium, and then the cells were cultured in the new medium containing Abeta(25-35) and/or olanzapine, quetiapine, but not serum, for various periods. It was shown that cultures treated with olanzapine + Abeta(25-35), or quetiapine + Abeta(25-35), had significantly higher cell viabilities and lower rates of apoptosis compared with the cultures exposed only to Abeta(25-35). In addition, the drugs blocked the activation of caspase-3 caused by Abeta(25-35). Furthermore, olanzapine and quetiapine prevented Abeta(25-35)-induced overproduction of intracellular reactive oxygen species, Abeta(25-35)-induced decrease in mitochondrial membrane potential, and Abeta(25-35)-induced changes in activities of the key antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In consideration of the wealth of evidence linking oxidative stress to the pathophysiology of schizophrenia and AD, these findings give us a new insight into the therapeutic actions of atypical antipsychotics in patients with the disorders.  相似文献   

20.
Previous studies have shown that caspases (proteases related to interleukin-1β converting enzyme) are needed for the death of trophic factor-deprived PC12 cells. However, the protease involved in this process has not been identified. The results presented here strongly suggest that caspase-2 (Nedd2/Ich-1) plays a major role in the death of serum-deprived PC12 cells. We show that in PC12 cells overexpression of caspase-2 induces cell death, serum deprivation induces processing (i.e., activation) of the 48-kDa pro-caspase-2, and stable expression of caspase-2 antisense RNA inhibits apoptosis induced by serum deprivation. In addition, overexpression of bcl-2, which prevents this death process, also inhibits the processing of pro-caspase-2, suggesting that bcl-2 acts upstream of pro-caspase-2 activation. J. Neurosci. Res. 52:491–497, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号