首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
目的 探索直读式剂量计测量介入职业人员眼晶状体剂量的方法,实现介入职业人员眼晶状体实时剂量的监测和高剂量率报警,为介入职业人员眼晶状体剂量监控和放射防护的改进提供科学依据。方法 选用直读式电子剂量计,以眼晶状体个人剂量当量Hp(3)对其刻度。选择包括单X射线管和双X射线管在内的5台数字减影血管造影(DSA)设备,对心脑血管介入手术中5种介入手术类型的介入人员眼晶状体剂量进行实时测读。对直读式剂量计测读结果进行统计分析,并与同种手术类型的热释光剂量计(TLD)测读结果进行比较。结果 经眼晶状体Hp(3)刻度,直读式剂量计线性拟合度较好,且变异系数<5%。测量冠状动脉造影和脑部支架植入术第一术者眼晶状体Hp(3)平均值,直读式剂量计测得值分别为12.0和24.5 μSv,TLD测得值分别为11.9和22.7 μSv。直读式剂量计与TLD测得剂量趋势吻合。直读式剂量计可获得单例手术中介入职业人员眼晶状体受照剂量,并对其眼晶状体剂量率进行实时监测。结论 直读式剂量计测量眼晶状体剂量的刻度方法可行,测读结果可用于介入职业人员眼晶状体剂量实时监测。  相似文献   

2.
目的 用热释光剂量计(TLD)和光致发光剂量计(OSLD)测量125 I粒籽源植入过程中职业人员眼晶状体和手部皮肤剂量,并进行对比分析。方法 从同批次中,选取TLD退火,包装,贴在仿真人模体腹部平坦处,125 I粒籽源放在与模体相同高度,距离15 cm处,分别照射不同剂量:1.0、1.5、3.0、5.0、10.0、12.0、20.0、25.0、30.0、50.0、60.0μGy,照射后的TLD经热释光测量仪测量,建立标准空气比释动能刻度曲线;选择2家医院4个部位:肺部14例、腹部10例、盆腔5例和颈部6例进行125 I粒籽源植入治疗,将刻度完的TLD分别贴在职业人员眼部的左、中、右位置,手部左、右位置,进行测量,得到相应部位的空气比释动能值,最后用眼部Hp(3)转换因子和手部Hp(0.07)转换因子分别计算职业人员眼晶状体和手部皮肤剂量当量值。同时建立OSLD测量方法,将退火后的OSLD放在与TLD相同位置直接测量职业人员眼晶状体和手部皮肤剂量当量。结果 125 I粒籽源植入治疗过程中,应用TLD测量得到手术医生和助手的眼晶状体累积剂量当量分别为0.8和1.6 mSv(肺部)、1.3和1.2 mSv(腹部)、0.9和0.6 mSv(盆腔)、均为0.3 mSv(颈部);手部累积剂量当量分别为1.4和2.1 mSv(肺部)、1.2和1.0 mSv(腹部)、0.5和0.9 mSv(盆腔)、均为0.1 mSv(颈部);单次手术植入时,职业人员眼晶状体和手部接受的最大剂量当量分别为1.2和1.0 mSv。应用OSLD测量得到肺部治疗时手术医生和助手的眼晶状体累积剂量当量分别为0.2和0.1 mSv,手部累积剂量当量分别为0.4和0.6 mSv;腹部治疗时手术医生手部累积剂量当量为0.1 mSv;其他部位治疗时不同职业人员的剂量当量值均为0 mSv。结论 TLD不仅能给出累积剂量当量,也能给出单次手术的剂量当量,按照ICRP 118号报告修订后规定的职业人员眼晶状体限值,本实验中以单次治疗时眼晶状体接受的最大剂量当量估算,则每年植入病例数不应超过17例。OSLD只能给出累积剂量,测量低剂量的准确性有待研究。  相似文献   

3.
目的 探索降低介入职业人员眼晶状体受照剂量的方法,为介入职业人员放射防护措施的改进提供数据支持。方法 选取1台配备常规辅助防护设施的介入设备和两种常见的神经介入手术类型,在辅助防护设施改造前和改造后分别测量46例和35例手术,用直读式电子剂量计读取各例介入手术中职业人员的眼晶状体受照剂量,并分析剂量变化趋势。结果 辅助防护设施改造后,全脑血管造影术、脑部栓塞术中第1术者和第2术者的左眼晶状体平均剂量分别由(9.71±10.86)和(9.51±12.34)μSv降低为(3.23±5.59)和(0.68±0.78)μSv、(14.83±19.13)和(14.12±21.76)μSv降低为(4.17±4.59)和(1.23±1.57)μSv;辅助防护设施改造前后测得的剂量差异具有统计学意义(U=-2.760和-2.467、-1.967和-2.655,P<0.05)。结论 改进介入手术中使用的辅助防护设施可以有效降低介入职业人员眼晶状体受照剂量,该方法可行性的验证为介入职业人员辐射防护效果的改善提供了新的依据。  相似文献   

4.
目的 介绍双热释光元件个人剂量计Hp(10)测量不确定度评定方法。方法 采用GUM法建立测量模型,根据个人剂量计的性能,对个人剂量当量Hp(10)测量不确定度进行评定。结果 当测量结果经非线性响应及能量响应等修正时,Hp(10)的相对扩展不确定度Urel为28%;当测量结果未进行非线性响应及能量响应等修正时,Hp(10)的相对扩展不确定度Urel为33%。结论 该方法可对常规监测中的个人剂量当量Hp(10)测量不确定度进行有效评定。  相似文献   

5.
目的 评估5种临床介入程序中,职业人员手部受照剂量水平。方法 选择北京4家医院进行5种介入程序的治疗,职业人员术中左右手各佩戴1枚热释光指环剂量计(TLD,LiF:Mg,Ti),进行手部剂量当量Hp(0.07)监测,同时分别记录患者的透视电压、透视电流、透视时间、摄影数,总累积剂量、剂量面积乘积等影响因素信息,对影响因素进行分析。结果 本研究共监测5种介入程序,119例手术。对5种介入程序中职业人员左手与右手受照剂量进行分析,差异有统计学意义(t=1.99,P<0.05)。不同介入程序的第一术者手部受照剂量左手、右手差异均有统计学意义(F=455.83、116.45,P<0.01)。影响因素分析中,随着透视管电压,透视电流,透视时间,摄影数的增加,操作者手部剂量也增加(r=0.570、0.712、0.564、0.711,P<0.05)。将上述单因素分析有统计学意义的变量引入多元线性回归方程中,采用逐步回归法拟合方程。经拟合方程为y=225.763+1.862x1-98.125x2F=22.726,P<0.05)。其中变量x1为透视时间,x2为摄影数。表明影响操作者手部剂量的主要因素是透视时间和摄影数。结论 在开展上述5种介入程序治疗时,第一术者的手部剂量最高,其次第二术者、助手或护士;5类介入程序中,第一术者的手部受照剂量水平高低排列为心脏起搏器植入术(PM) > 射频消融(RFA) > 冠状动脉血管造影术(CA) > 支架植入术(PTCA+PCI) > 脑动脉瘤介入术(ITCA);大量开展PM手术时,第一术者手部的年当量剂量有可能超过限值。  相似文献   

6.
目的 按照国际电工委员会(IEC)技术规范及我国现行核行业标准的相关要求,在国家二级标准剂量学实验室研究与建立用于照射腕式剂量计校准曲线的X、γ射线标准辐射场,使这类监测数据具有溯源性。方法 通过标准剂量仪测量不同能量X射线、137Cs及60Co参考源等3个辐射场的空气比释动能率,结合相关标准规范提供的弱贯穿辐射Hp(0.07)转换系数,确定了照射腕式剂量计校准曲线的X、γ标准辐射场参考条件,使用热释光腕式剂量计(TLD)在国际标准化组织(ISO)圆柱模体上照射,完成了TLD腕式剂量计线性、能量响应等剂量学指标的验证工作。结果 建立了用于照射腕式剂量计校准曲线的X、γ射线标准辐射场。结论 建立的X、γ标准辐射场可以用于照射腕式剂量计标准曲线和能量响应等特性实验的技术服务、并为开展相关的研究工作提供实验条件,进一步提高了监测数据的可比性和可靠性。  相似文献   

7.
目的 调查与分析我国2019-2021年介入放射工作人员眼晶状体剂量水平。方法 通过国家放射卫生信息平台,收集我国31个省、直辖市、自治区2019-2021年介入放射工作人员的眼晶状体剂量监测数据。眼晶状体剂量评价指标为个人剂量当量Hp(3),每次监测周期不超过3个月。用Kusall-Wallis H检验比较不同年份、职业岗位、介入科室、工作所限的介入放射工作人员眼晶状体剂量分布的差异。结果 2019-2021年共调查6 643人次介入放射工作人员,平均眼晶状体年剂量为1.03 mSv,中位数为0.17 mSv,最大值为94.88 mSv,其中有59人次超过20 mSv。经分析发现,2019年、2020年医生眼晶状体年剂量水平略高于护士,差异有统计学意义(平均秩次差=118.29、129.71,P<0.01),2019年从事心脏介入的放射工作人员眼晶状体剂量水平高于从事周围血管介入的放射工作人员,差异有统计学意义(平均秩次差=46.52,P<0.05)。结论 介入放射工作人员眼晶状体剂量水平低于我国现行标准,但部分人员超过了国际最新推荐剂量限值,为保护介入放射工作人员职业健康,应加强对其眼晶状体剂量的监测。  相似文献   

8.
目的 探讨正电子发射断层成像装置(PET)质量控制检测时,检测操作人员眼晶状体受照剂量。方法 对山东省5台PET质量控制检测时,在分装前、制作点源、制作线源1和制作线源2时分别在2名检测操作人员的左眼部左侧、左眼部前方,左右眼中间、右眼部前方、右眼部右侧各佩戴1个热释光眼晶状体个人剂量计。对检测操作人员眼晶状体受照辐射剂量进行测量和分析,计算其最大年受照剂量。结果 检测5台PET,检测时操作人员的眼晶状体最大剂量是2 439.80 μSv,第一和第二检测操作人员左右眼晶状体剂量呈现相同趋势(χ2=15.629~16.155,P<0.05),第一检测操作人员眼晶状体受照剂量高于第二检测操作人员(Z=2.611,P<0.05)。结论 单台PET检测所致检测操作人员眼晶状体受照剂量处于较低水平。  相似文献   

9.
目的 明确用于放疗剂量验证的新型片状Presage胶体剂量计的吸收光谱、剂量线性、量程、稳定性等关键剂量响应特性。方法 使用放疗加速器对同批次片状Presage剂量计进行系列照射实验,使用分光光度计测量照射前后剂量计在400~700 nm可见光范围内的吸收光谱,使用胶片平板扫描仪测量照射前后R-G-B 3通道的吸光度变化。结果 片状Presage在628 nm处有明显吸收峰且峰值吸光度随受照剂量呈显著线性变化趋势(R2=0.999 9),而在490 nm附近存在平缓吸收谷且谷区吸光度随受照剂量变化不大。胶体平板扫描仪R通道的吸光度测量灵敏度远大于G与B通道,在<10 Gy范围内,R通道吸光度随受照剂量呈高度线性变化(R2=0.999 9),而在大量程范围则呈显著二次变化趋势(R2=0.999 9)。该剂量计的量程范围>94.6 Gy,在照射后1 h内吸光度变化可忽略,之后则呈现缓慢上升趋势,上升速度与受照剂量呈正相关,同时,未发现剂量梯度区出现梯度模糊现象。结论 新型片状Presage胶体剂量计在一定范围内具有良好剂量线性,量程大、梯度保持性好、无分割效应,提示在大分割多靶点放疗的积分剂量验证中具有潜在应用优势。  相似文献   

10.
目的 探讨不同铅当量和镜片大小铅眼镜对介入放射工作人员眼晶状体的防护效果.方法 利用MCNPX软件和人体体素体模,模拟计算在不同投照体位条件下介入放射学工作人员佩戴不同铅眼镜时的眼晶状体剂量;通过在仿真人体模上布放眼晶状体剂量计开展实验测量,以验证理论计算结果.结果 模拟计算结果表明,当单个镜片大小为20 cm2时,佩戴0.1~1.0 mm Pb(铅)眼镜可降低眼晶状体受照剂量系数为3~9;剂量降低系数(DRF)不仅与眼镜的铅当量有关,而且还取决于X射线的投照体位;当镜片的铅当量超过0.35 mm Pb时,随着镜片铅当量的增加,剂量的进一步降低并不明显.在相同铅当量条件下,当镜片尺寸为6~30 cm2时,DRF与镜片的大小成线性增长关系.模拟计算数值和实验结果基本吻合.结论 为有效地保护介入放射学工作人员的眼晶状体,推荐佩戴铅当量为0.5 mm Pb且镜片尽量大的防护眼镜.  相似文献   

11.
目的通过在不同标准X射线RQR辐射场对Hp(3)进行刻度,并对刻度结果进行比较,探究国内标准X射线RQR辐射场刻度Hp(3)的可行性。方法选择直径20 cm、高20 cm的柱模,分别选取国内外标准X射线RQR辐射场对同一TLD进行Hp(3)的刻度,选择射线包括RQR4(60 kV)、RQR7(90 kV)、RQR9(120 kV),刻度内容包括能量响应、角度响应和线性响应。结果在能量响应方面,TLD对国内外标准X射线RQR辐射场响应均较好,响应值与照射值差异均在10%以内。在角度响应方面,TLD在国外辐射场响应值较好,响应值与照射值差异均在6%以内。而在国内辐射场,TLD在20°响应值偏低,响应值与照射值差异>10%。在线性响应方面,TLD在国内和国外标准X射线RQR辐射场拟合程度均较好。结论本研究的各项检测结果表明,国内标准X射线RQR辐射场可以对TLD进行Hp(3)的刻度。  相似文献   

12.
目的调查2017—2019年我国介入放射学工作人员眼晶状体辐射剂量水平,掌握我国介入放射工作人员眼晶状体剂量水平现状。方法通过国家个人剂量登记系统,采集我国28个省份介入放射学工作人员眼晶状体剂量监测数据,监测部位为左眼、评估指标为个人剂量当量Hp(3)、监测方法为热释光剂量计。分别运用Mann-Whitney U检验和Kruskal-Wallis H检验对各年度及不同医院类别和级别人均年当量剂量进行统计分析。结果采集2017—2019年介入放射学工作人员眼晶状体剂量监测数据共2981人次,眼晶状体年当量剂量范围为<最低探测水平(MDL)~64.48 mSv,人均年当量剂量为1.38 mSv,93.69%监测对象年剂量集中在0.05);三级医院和二级医院人均年当量剂量分别为1.39和1.16 mSv,三级医院放射工作人员眼晶状体剂量水平高于二级医院(Z=2.894,P<0.05)。结论我国介入放射学工作人员眼晶状体年当量剂量符合国家现行限值标准,但有部分放射工作人员年剂量超出国际新限值标准,提示这类职业人群眼晶状体剂量超出国际新标准的风险较大,建议加强介入放射学工作人员眼晶状体剂量的持续监测工作,提高放射防护意识,采取有效防护措施降低眼晶状体剂量水平。  相似文献   

13.
PurposeTo present the results of occupational radiation doses investigated through a national survey promoted by the National Society of Interventional Radiology in Spain.Materials and MethodsThe monthly dosimetric records of 28 interventional radiologists from 10 hospitals were analyzed and filtered to remove inconsistent dosimeter readings. The evaluation of the results includes different workloads as well as different radiation protection habits.ResultsPoor use of personal dosimetry by some interventional radiologists was brought to light. Most professionals do not use an over-apron dosimeter as recommended by the International Commission on Radiological Protection. Ceiling-suspended protective screens are used irregularly in many cases. All interventionalists perform digital subtraction angiographic imaging from a control room in more than 80% of procedures. The maximum monthly doses recorded were 3.8 mSv under the apron, 20.2 mSv over the apron, and 63.1 mSv to the hands.ConclusionsFor under-apron and hand readings, extrapolated median values were below 30% of annual dose limits, but in the case of over-apron readings, the extrapolated median dose was higher than the newly recommended limit for the eye lens of 20 mSv per year. This study mainly highlights the need to use radiation protection tools and personal dosimeters to protect staff and monitor eye lens doses.  相似文献   

14.
PurposeTo describe the range of occupational badge dose readings and annualized dose records among physicians performing fluoroscopically guided interventional (FGI) procedures using job title information provided by the same 3 major medical institutions in 2009, 2012, and 2015.Materials and MethodsThe Radiation Safety Office of selected hospitals was contacted to request assistance with identifying physicians in a large commercial dosimetry database. All entries judged to be uninformative of occupational doses to FGI procedure staff were excluded. Monthly and annualized doses were described with univariate statistics and box-and-whisker plots.ResultsThe dosimetry data set of interventional radiology staff contained 169 annual dose records from 77 different physicians and 698 annual dose records from 455 nonphysicians. The median annualized lens dose equivalent values among physicians (11.9 mSv; interquartile range [IQR], 6.9–20.0 mSv) was nearly 3-fold higher than those among nonphysician medical staff assisting with FGI procedures (4.0 mSv; IQR, 1.8–6.7 mSv) (P < .001). During the study period, without eye protection, 25% (23 of 93) of the physician annualized lens dose equivalent values may have exceeded 20 mSv; for nonphysician medical staff, this value may have been exceeded 3.5% (6 of 173) of the time. However, these values did not account for eye protection.ConclusionsThe findings from this study highlight the importance of mitigating occupational dose to the eyes of medical staff, particularly physicians, performing or assisting with FGI procedures. Training on radiation protection principles, the use of personal protective equipment, and patient radiation dose management can all help ensure that the occupational radiation dose is adequately controlled.  相似文献   

15.

Objective:

Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures.

Methods:

A new eye lens dosemeter (EYE-D, Radcard, Krakow, Poland) was used to measure the ERCP eye dose, Hp(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out.

Results:

The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented.

Conclusion:

Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit.

Advances in knowledge:

Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated Hp(3) dosemeter.Endoscopic retrograde cholangiopancreatography (ERCP) is a common interventional radiology (IR) procedure that is used for examination of the pancreatic duct and bile ducts. ERCP was initially used as a purely diagnostic procedure; however, over the last two decades, therapeutic applications have been developed [1, 2]. Therapeutic procedures typically require longer fluoroscopy times (than diagnostic procedures) and result in a higher radiation dose [3]. During interventional ERCP procedures, fluoroscopic and radiographic images are taken, with staff positioned near the patient [4]. This arrangement, as for all IR procedures, will constitute a radiation risk to endoscopic staff in the vicinity of the patient.

Radiation dose from ERCP

In comparison with other IR/interventional cardiology (IC) procedures, data on staff doses from ERCP are limited and, where they exist, dose estimates vary greatly [1, 3, 5, 6]. Recent publications on extremity and eye doses from ERCP have shown that there is potential for high staff doses, particularly if the X-ray tube is positioned over the operating table (overcouch) [3, 5, 7, 8].

Use of radiation outside the radiology department

ERCP procedures are carried out by a gastroenterologist (GE) and may be performed outside the radiology department (e.g. operating theatre or endoscopic suite) [9]. It is a requirement of the Euratom 97/43 directive [10] that staff performing the practical aspects of a medical exposure should have received adequate training in radiation protection. However, the GE may not have had in-depth training in radiation management using diverse forms of fluoroscopic equipment nor in the potential harmful effects to patients and staff [1, 2, 11].

Revised ICRP dose limit

In April 2011, the International Commission on Radiological Protection (ICRP) published a statement on tissue reactions [12]. For the lens of the eye, the threshold in absorbed dose for tissue reaction effects (radiation-induced cataracts) is now considered to be 0.5 Gy. Based on this new threshold, the ICRP has recommended an equivalent dose limit for the lens of the eye of 20 mSv (with scope to average over defined periods of 5 years). This is a considerable reduction from the previous equivalent dose limit of 150 mSv [13]. While the need for improved eye lens dosimetry has been acknowledged, there has been much commentary regarding the practical implications of this new limit for medical radiation protection [1418].

Measurement of staff eye lens doses

The ICRU operational quantity Hp(3) is used to monitor dose to the lens of the eye [19]. However, in practice, Hp(3) is not measured and estimates based on the ICRU operational quantity Hp(0.07) are often used [20]. The need for reliable determination of eye doses was investigated by the European Union (EU) Optimization of Radiation protection for Medical staff (ORAMED) project [21], which concluded that specific conversion coefficients for eye lens dosimetry were not available. The ORAMED project team went on to develop these conversion coefficients along with proposals for calibration conditions and the first dosemeter dedicated to measuring Hp(3) [18, 22, 23].Based on (1) the lack of data on staff doses from ERCP procedures, (2) the need for more radiation protection focus on areas outside the radiology department, (3) the revised ICRP eye dose limit and (iv) the availability of a new Hp(3) dosemeter, this study was undertaken to investigate these issues. The primary aim was to obtain an accurate measure of occupational Hp(3) eye doses during ERCP procedures and to assess these data in the context of the revised ICRP lens limit. Along with the measurement of eye doses, a review of radiation protection arrangements at two ERCP facilities was carried out.  相似文献   

16.
To avoid radiation injury from interventional radiology (IVR), quality assurance (QA) of IVR equipment based on dosimetry is important. In this study, we investigated the usefulness of measuring patient skin dose with a passive integrating dosimeter and water phantom. The optically stimulated luminescence dosimeter (OSLD) was chosen from among various passive integrating dosimeters. The characteristics of the OSLD were compared with a reference ionization dosimeter. The effective energy obtained from the OSLD was compared with that found by the aluminum attenuation method for using the reference ionization dosimeter. Doses and effective energies measured by OSLD correlated well with those of the reference ionization dosimeter. (dose: y=0.971x, r=0.999, effective energy: y=0.990x, r=0.994). It was suggested that OSLD could simultaneously and correctly measure both patient skin dose and effective energy. Patient skin dose rate and effective energy for 15 IVR units of 10 hospitals were investigated using OSLD and a water phantom for automatic brightness control fluoroscopy. The measurement was performed at the surface of a water phantom that was located on the interventional reference point, and source image intensifier distance was fixed to 100 cm. When the 9-inch field size was selected, the average patient skin dose rate was 16.3+/-8.1 mGy/min (3.6-32.0 mGy/min), the average effective energy was 34.6+/-4.1 keV (30.5-42.5 keV). As a result, it was suggested that QA should be performed not only for patient dose but also for effective energy. QA of equipment is integral to maintaining consistently appropriate doses. Consequently, the dosimetry of each IVR unit should be regularly executed to estimate the outline of patient skin dose. It was useful to investigate patient skin dose/effective energy with the passive integrating dosimeter for IVR equipment.  相似文献   

17.
眼晶状体剂量限值的降低,使介入手术中职业人员的眼晶状体剂量监测和防护备受关注。基于文献中模拟计算和实验测量结果的调研,分析了介入人员眼晶状体防护用品的防护效果及影响因素,并提出了选择和使用建议。介入人员的眼晶状体剂量主要来自未被屏蔽而直接入射到眼部的射线;制约眼晶状体防护效果的重点不是铅当量厚度,而是防护用品结构、投照方位、位置布局、人员姿态等几何条件。0.5 mm铅当量对于介入人员眼晶状体防护是足够的;在临床实践中,组合使用铅眼镜和铅屏风能更好地对眼晶状体进行防护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号