首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
目前已对突触可塑性的基本特性有了相当程度的认识 ,但对其发育中神经元可塑性的内在分子机制尚待进一步阐明。不少研究提示 ,c AMP反应元件结合蛋白 ( CREB)在学习、记忆和长时程增强 ( LTP)过程中参与长时程突触的可塑性调节 ,推测其在视觉系统可塑性中也发挥着重要作用。本研究通过建立幼年大鼠单眼剥夺弱视模型 ,应用免疫组织化学方法 ,对视觉发育关键期末 ( P45 )大鼠和成年 ( P90 )大鼠视皮层中 CREB和 p CREB的免疫反应性进行观察、比较和分析。结果 :视觉发育关键期内进行单眼视觉剥夺对大鼠视皮层内总 CREB的蛋白表达没有产生显著影响 ,而 p CREB在 P45大鼠的剥夺眼对侧视皮层单眼反应区的 / 、 层中的蛋白表达较剥夺眼同侧视皮层的相应区域弱 ,该差异在该年龄大鼠的双眼反应区及成年后大鼠视皮层内不存在。结论 :CREB可能通过该磷酸化形式在视觉系统可塑性中发挥作用  相似文献   

2.
为了研究正常发育和单眼视觉剥夺大鼠视皮层 ERK1/ ERK2基因蛋白质表达的变化 ,本研究建立了 SD大鼠单眼视觉剥夺模型 ,以多克隆抗 ERK1/ ERK2抗体和单克隆抗双磷酸化 ERK抗体检测出生后第 1、14、2 1、2 8、45 d和成年 (90 d)正常发育和单眼视觉剥夺 (14~ 45 d)视皮层 ERK1/ ERK2蛋白表达和活性改变。结果表明 ,出生后大鼠视皮层 ERK1/ ERK2蛋白表达逐渐增加 ,至 45 d达到高峰 ,此后下降至成年达稳定水平。磷酸化 ERK蛋白表达仅见于成年大鼠视皮层。单眼视觉剥夺导致ERK1/ ERK2蛋白表达减少。提示 ERK的蛋白表达依赖于正常的视觉输入信号的刺激 ,异常的视觉经验造成表达的明显下调 ,阻断正常的发育进程。说明 ERK1和 ERK2可能参与发育敏感期视皮层神经元可塑性的调节  相似文献   

3.
目的 检测蛋白激酶α和 β(PKCα、PKCβ)在正常大鼠视皮层及视觉剥夺性视皮层中的蛋白表达情况 ,为探讨视觉发育可塑性提供分子基础。方法 采用剥夺性弱视大鼠模型 ,用特异的PKCα和PKCβ抗体对脑切片进行免疫组化。 结果 正常视皮层中 ,这两种PKC同工酶在除Ⅰ层外的其余各层均有显著表达。视觉剥夺的视皮层缺乏正常视皮层那样的清晰分层。与正常视皮层比较 ,弱视眼对侧视皮层中PKCα在Ⅱ~Ⅳ层的蛋白表达广泛减少 ,PKCβ在Ⅱ~Ⅴ层的表达强度明显减弱。结论 PKCα、PKCβ的蛋白表达水平在剥夺性视皮层发育障碍过程中发生了显著改变 ,它们可能参与视皮层发育可塑性的分子机制。  相似文献   

4.
目的:观察核呼吸因子-1(NRF-1)在正常发育及视觉剥夺大鼠视皮层内的表达.方法:构建视觉剥夺大鼠模型,利用半定量:PCR、Western blot及免疫组织化学的方法检测NRF-1在正常发育及视觉剥夺大鼠视皮层内的差异表达.结果:通过以上方法均可检测到视觉剥夺大鼠视皮层内NRF-1表达明显降低.结论:NRF-1的基因转录及蛋白表达水平依赖于正常视觉信号的刺激,异常的视觉经验使视皮层神经元兴奋性降低,造成NRF-1表达的明显下调.  相似文献   

5.
目的:探讨出生后的Long Evans大鼠视皮层组织型纤溶酶原激活剂(tPA)与小清蛋白(PV)、神经元周围网络(PNs)三者发育性共表达的关系及其与视皮层发育可塑性的相关性.方法:应用免疫荧光组织化学对生后3(关键期起始)、4(高峰)、5(后期)、7(终止)、9(成年)周龄的Long Evans大鼠视皮层分别进行tPA、NeuN、DAPI和tPA、PV、PNs三重标记以检测它们的表达随发育的时空关系.结果:tPA+ PNs阳性细胞密度在4周龄显著增加达高峰,随后在9周龄显著减少,tPA+PV和PV+PNs阳性细胞密度在3周龄已达峰值并维持至4周龄,在5周龄显著减少至最低水平,随后显著增加至成年高水平;tPA+PV/tPA和PV+PNs/PNs比值在3周龄已达最大值,在5周龄显著降至最低,随后显著上升至成年水平;tPA+ PV+ PNs阳性细胞密度在可塑性关键期的高峰期即4周龄出现峰值.结论:PNs对PV的包绕随发育的变化可能是PNs参与关键期终止的结构基础;存在tPA+ PV+ PNs阳性细胞,此类神经元在可塑性高峰期富集提示它们可能与关键期可塑性的增强有关.  相似文献   

6.
目的 探讨视觉发育关键期外侧膝状体(LGB)胰岛素样生长因子2 (IGF2)的动态表达变化。方法 选取3组不同年龄段的昆明小鼠进行试验,分别为3周龄组,5周龄组,7周龄组,每组12只。采用前爪触地反射实验检测各组小鼠的视觉功能是否正常;采用免疫组织化学技术检测小鼠出生后3、5和7周外侧膝状体IGF2蛋白及其受体的表达水平,分析IGF2蛋白在LGB各局部及其受体的表达变化模式。结果 3~7周的发育过程中,在小鼠LGB背侧核IGF2蛋白表达5周时显著减少,7周时显著增加,腹侧核IGF2蛋白表达随时间逐渐增加。LGB背侧核及腹侧核IGF2受体蛋白表达5周时显著增加,7周时减少至3周时水平。 结论 视觉发育关键期小鼠外侧膝状体IGF2及其受体的表达存在随时间的动态改变,且各局部的表达模式不完全一致,IGF2及其受体可能与小鼠视觉发育可塑性有关。  相似文献   

7.
细胞外信号调节蛋白激酶 (ERKs)是皮层神经元生长、发育和分化的关键因子。本研究目的在于研究 ERKs(ERK1、ERK2和 ERK3 ) m RNA在视皮层各层的分布、表达量以及发育过程变化。实验用健康雄性 SD大鼠 ,于生后 (P) 14、2 1、2 8、45和 90 d(成年 )灌注固定 ,取全脑 ,切取视皮层。用 4%多聚甲醛固定 ,石蜡包埋 ,4μm厚切片。地高辛标记特异性寡核苷酸探针 (ERK1、ERK2 )和 c DNA探针 (ERK3 )。用原位杂交方法检测三种 ERKs亚型的 m RNA在各年龄组大鼠视皮层的表达。结果证明 :ERKs m RNA在出生后大鼠正常发育视皮层的表达 ,ERK1和 ERK2 m RNA的分布具有明显的层的特异性 ,表达于除 I层 (分子层 )之外的 II-VI层 ,ERK2较 ERK1m RNA的表达更广泛、信号密度更强。ERK1和 ERK2 m RNA的转录在发育敏感期增高 ,从 P2 1~P2 8逐渐增加 ,P45时达到高峰 ,到成年时降低为相当于 P2 1的水平。 ERK3 m RNA在大鼠出生后视皮层的信号表达强 ,比较恒定 ,无明显的层分布特异性。本研究结果提示 ,出生后正常大鼠发育期视皮层 ERK1和 ERK2的 m RNA表达呈上调趋势 ,而 ERK3 m RNA在大鼠出生后视皮层的表达量中等 ,比较恒定 ,缺乏发育性变化特点。表明 ERK1和 ERK2可能是参与出生后在视觉环境刺激下视皮层发育可塑性调节的重要  相似文献   

8.
目的:通过体外观察硫酸软骨素蛋白多糖(CSPGs)对γ-氨基丁酸(GABA)能神经元表达及其抑制性突触传递功能的影响,为探索CSPGs抑制视皮层可塑性的机制提供实验依据。方法:运用硫酸软骨素酶(ChABC)处理体外培养的胎鼠视皮层神经元,降解其CSPGs后应用免疫荧光显色检测CSPGs降解情况及GABA能神经元的表达变化,并用膜片钳检测其自发性微小性抑制性突触后电流(mIPSCs)以观察其抑制性突触传递功能变化情况。结果:0.1 U/ml ChABC处理神经元后,CSPGs被成功降解,GABA能神经元细胞密度、mIPSCs幅度和频率均显著低于正常对照组。结论:CSPGs能促进GABA能神经元表达及其抑制性突触传递功能的成熟,这可能是CSPGs抑制视皮层可塑性的作用机制之一。  相似文献   

9.
慢性间歇低氧对幼鼠认知及相关脑区CREB的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
目的:观察慢性间歇低氧(CIH)对幼鼠认知的影响并探讨其潜在的机制。方法:取八臂迷宫训练成功的SPF级健康雄性SD幼鼠40只,随机分为:间歇低氧2周(2IH)、4周组(4IH),对照2周(2C)、4周组(4C),建立IH幼鼠模型,低氧结束后进行八臂迷宫测试,观察海马和前额叶皮层超微结构变化及cAMP反应元件结合蛋白(CREB)mRNA和磷酸化CREB蛋白的表达。结果:4组幼鼠的记忆错误次数比较均有显著差别(均P0.05);IH各组海马及前额叶皮层神经元均出现早期凋亡和变性,尤以4IH组最为明显,对照组则基本正常;与相应对照组相比,2IH、4IH组幼鼠海马和前额叶皮层CREB mRNA和p-CREB蛋白的表达水平显著降低(均P0.05),且以4IH组最低(均P0.01),差异显著,两对照组之间无显著差异(P0.05)。结论:慢性间歇低氧诱导海马和前额叶皮层神经元超微结构改变,还下调CREB的基因转录和抑制CREB蛋白磷酸化,抑制记忆相关蛋白的合成,这可能是引起学习记忆能力下降的重要机制之一。  相似文献   

10.
 目的 观察核呼吸因子-2α(NRF-2α)在正常发育及视觉剥夺大鼠视皮质内的表达。方法 构建视觉剥夺大鼠模型,利用半定量PCR和免疫印迹的方法检测过氧化物酶体增生激活受体γ协同刺激因子(PGC-1)、 NRF-2α和线粒体转录因子A(mtTFA)在视皮质内的表达。结果 视觉剥夺大鼠视皮质内PGC-1、NRF-2α和mtTFA表达较正常组明显降低(P < 0.05)。结论NRF-2α的基因转录及蛋白表达水平依赖于正常视觉信号的刺激,异常的视觉经验使视皮质神经元兴奋性降低,造成NRF-2α表达的明显下调。  相似文献   

11.
Formation of neural circuitry in the developing visual cortex is shaped by experience during the critical period. A number of mechanisms, including N-methyl-D-aspartate (NMDA) receptor activation and gamma-aminobutyric acid (GABA)-mediated inhibition, are crucial in determining onset and closure of the critical period for visual plasticity. Animal models have shown that a threshold level of tonic inhibition must be reached for critical period plasticity to occur and that NMDA receptors contribute to Hebbian synaptic plasticity in the developing visual cortex. There are a number of developmental changes in these glutamatergic and GABAergic mechanisms that have been linked to plasticity; however, those changes have been shown only in animal models, and their development in the human visual cortex is not known. We have addressed this question by studying the expression of the major glutamatergic receptors, GABA(A) receptors, and glutamic acid decarboxylase (GAD) isoforms during the first 6 years of postnatal development of human visual cortex. There are significant changes in the expression of these proteins during postnatal development of human visual cortex. The time course of the changes is quite prolonged and suggests that it may set the pace for the prolonged critical period in human visual development. The changes also affect the nature of spatial and temporal integration in visual cortical neurons and thereby contribute to the maturation of visual functions.  相似文献   

12.
Rearing in darkness slows the time course of the visual cortical critical period, such that at 5 weeks of age normal cats are more plastic than dark-reared cats, while at 20 weeks dark-reared cats are more plastic [Mower GD (1991) The effect of dark rearing on the time course of the critical period in cat visual cortex. Dev Brain Res 58:151-158]. Thus, genes that are important for visual cortical plasticity should show differences in expression between normal and dark-reared visual cortex that are of opposite direction in young versus older animals. Previously, we showed by differential display polymerase chain reaction and northern blotting that mRNA for Munc13-3, a mammalian homologue of the C. elegans uncoordinated (unc) gene, shows such bidirectional regulation in cat visual cortex [Yang CB, Zheng YT, Li GY, Mower GD (2002) Identification of Munc13-3 as a candidate gene for critical period neuroplasticity in visual cortex. J Neurosci 22:8614-8618]. Here, the analysis is extended to Munc13-3 protein in mouse visual cortex, which will provide the basis for gene manipulation analysis. In mice, Munc13-3 protein was elevated 2.3-fold in dark-reared compared with normal visual cortex at 3.5 weeks and 2.0-fold in normal compared with dark-reared visual cortex at 9.5 weeks. Analysis of variance of protein levels showed a significant interaction, indicating that the effect of dark rearing depended on age. This bidirectional regulation was restricted to visual cortex and did not occur in frontal cortex. Bidirectional regulation was also specific to Munc13-3 and was not found for other Munc13 family members. Munc13 proteins serve a central priming function in synaptic vesicle exocytosis at glutamatergic and GABAergic synapses and this work contributes to the growing evidence indicating a role of Munc13 genes in synaptic plasticity.  相似文献   

13.
Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor-mediated synaptic responses decrease in duration after the peak of cortical plasticity in rodents. Accordingly, it is believed that shortening of the NMDA receptor-mediated current underlies the developmental reduction of ocular dominance plasticity. However, some previous evidence actually suggests that the duration of NMDA receptor currents decreases before the peak of plasticity. In the present study, we have examined the time course of NMDA receptor changes and how they correlate with the critical period of ocular dominance plasticity in the visual cortex of a highly binocular animal, the ferret. The expression of NMDA receptor subunits NR1, NR2A, and NR2B was examined in animals ranging in age from postnatal day 16 to adult using Western blotting. Functional properties of NMDA receptors in layer IV cortical neurons were studied using whole cell patch-clamp techniques in an in vitro slice preparation of ferret primary visual cortex. We observed a remarkable increase in NR1 and NR2A, but not NR2B, expression after eye opening. The NMDA receptor-mediated synaptic currents showed an abrupt decrease in decay time concurrent with the increase in NR2A subunit expression. Importantly, these changes occurred in parallel with increased ocular dominance plasticity reported in the ferret. In conclusion, molecular changes leading to decreased duration of the NMDA receptor excitatory postsynaptic current may be a requirement for the onset, rather than the end, of the critical period of ocular dominance plasticity.  相似文献   

14.
Jia F  Wei H  Li X  Xie X  Zhou Y 《Neuroscience letters》2006,398(1-2):73-77
The critical period for visual system development in rats normally peaks at postnatal three weeks and ends at postnatal five weeks. However, the change of short-term synaptic plasticity during this period has rarely been investigated. In the present study, we compared the short-term plasticity of visual cortical responses to lateral geniculate nucleus stimulation in rats at different development stages (P20, P30 and adult) in vivo. The results show that paired-pulse depression (PPD) and frequency-dependent depression of evoked field potentials (FP) are present in P20 rats and increase in magnitude with development. The time course of this maturation of synaptic depression parallels that of the visual critical period. The weak synaptic depression observed in juvenile rats may be important in enhancing excitatory neurotransmission at a time when synapses are immature; this could endow immature synapses with wide integrative capabilities. In contrast, suppressive temporal interactions could provide an important substrate for neuronal processing of visual information in the mature cortex.  相似文献   

15.
Suppression of rapid eye movement sleep (REMS) in developing animals has both anatomical and physiological consequences. We have recently shown that initiating REMS deprivation (REMSD) prior to the end of the critical period in young rats delays termination of the critical period (CP) in visual cortex, and, consequently, the synaptic plasticity mechanisms that support a developmentally regulated form of long-term potentiation (LTP) are maintained in an immature state [J.P. Shaffery, C.M. Sinton, G. Bisset, H.P. Roffwarg, G.A. Marks, Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats, Neuroscience, 110 (2002) 431-443]. In CP animals, high-frequency, theta burst stimulation (TBS) directed at the white matter (WM) below visual cortex produces LTP in the post-synaptic cells in layer II/III (LTPWM-III). However, LTPWM-III can be induced in cortical tissue taken from REMS-deprived animals for up to a week beyond the usual end of the CP [J.P. Shaffery, C.M. Sinton, G. Bisset, H.P. Roffwarg, G.A. Marks, Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats, Neuroscience, 110 (2002) 431-443]. Further, in post-CP, adolescent animals (as late as postnatal day 60), REMSD appears to unmask synaptic plasticity mechanisms that allow for production of developmentally regulated LTPWM-III [J.P. Shaffery, J. Lopez, G. Bissette, H.P. Roffwarg, Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats, Neurosci Lett., (2005), in press]. It has been proposed that REMSD's effects on production of LTPWM-III result from a reduction in efficiency of the inhibitory mechanisms thought to precipitate termination of the CP of brain development [J.P. Shaffery, J. Lopez, G. Bissette, H.P. Roffwarg, Rapid eye movement sleep deprivation revives a form of developmentally regulated synaptic plasticity in the visual cortex of post-critical period rats, Neurosci Lett., (2005), in press]. In this study we tested the hypothesis that low-frequency stimulation (LFS) of the fibers of the WM, which usually produces the related form of synaptic plasticity, long-term depression (LTD), will also reflect the reduction in inhibitory tone. We report here that LFS protocols, which in normally sleeping, adolescent rats usually produce either LTD or no change in response magnitude, in REMS-deprived, adolescent rats are more likely to produce LTP.  相似文献   

16.
The critical period for observing a developmentally regulated form of synaptic plasticity in the visual cortex of young rats normally ends at about postnatal day 30. This developmentally regulated form of in vitro long-term potentiation (LTP) can be reliably induced in layers II-III by aiming high frequency, theta burst stimulation (TBS) at the white matter situated directly below visual cortex (LTPWM-III). Previous work has demonstrated that suppression of sensory activation of visual cortex, achieved by rearing young rats in total darkness from birth, delays termination of the critical period for inducing LTPWM-III. Subsequent data also demonstrated that when rapid eye movement sleep (REMS) is suppressed, thereby reducing REMS cortical activation, just prior to the end of the critical period, termination of this developmental phase is delayed, and LTPWM-III can still be reliably produced in the usual post-critical period. Here, we report that for approximately 3 weeks immediately following the usual end of the critical period, suppression of REMS disrupts the maturational processes that close the critical period, and LTPWM-III is readily induced in brain slices taken from these somewhat older animals. Insofar as in vitro LTP is a model for the cellular and molecular changes that underlie developmental synaptic plasticity, these results suggest that mechanisms of synaptic plasticity, which participate in brain development and perhaps also in learning and memory processes, remain susceptible to the effects of REMS deprivation during the general period of adolescence in the rat.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号