首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   79篇
  国内免费   18篇
耳鼻咽喉   1篇
儿科学   3篇
妇产科学   2篇
基础医学   340篇
口腔科学   3篇
临床医学   58篇
内科学   46篇
神经病学   828篇
特种医学   18篇
外科学   73篇
综合类   81篇
预防医学   21篇
眼科学   23篇
药学   119篇
  1篇
中国医学   30篇
肿瘤学   12篇
  2024年   6篇
  2023年   20篇
  2022年   52篇
  2021年   92篇
  2020年   87篇
  2019年   52篇
  2018年   33篇
  2017年   38篇
  2016年   92篇
  2015年   66篇
  2014年   82篇
  2013年   80篇
  2012年   81篇
  2011年   94篇
  2010年   71篇
  2009年   88篇
  2008年   84篇
  2007年   73篇
  2006年   59篇
  2005年   44篇
  2004年   26篇
  2003年   25篇
  2002年   17篇
  2001年   32篇
  2000年   34篇
  1999年   22篇
  1998年   24篇
  1997年   27篇
  1996年   15篇
  1995年   34篇
  1994年   22篇
  1993年   18篇
  1992年   21篇
  1991年   11篇
  1990年   13篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1659条查询结果,搜索用时 890 毫秒
31.
《Biochemical pharmacology》2014,89(4):594-604
Microglia, the immune cells of the central nervous system, have long been a subject of study in the Alzheimer's disease (AD) field due to their dramatic responses to the pathophysiology of the disease. With several large-scale genetic studies in the past year implicating microglial molecules in AD, the potential significance of these cells has become more prominent than ever before. As a disease that is tightly linked to aging, it is perhaps not entirely surprising that microglia of the AD brain share some phenotypes with aging microglia. Yet the relative impacts of both conditions on microglia are less frequently considered in concert. Furthermore, microglial “activation” and “neuroinflammation” are commonly analyzed in studies of neurodegeneration but are somewhat ill-defined concepts that in fact encompass multiple cellular processes. In this review, we have enumerated six distinct functions of microglia and discuss the specific effects of both aging and AD. By calling attention to the commonalities of these two states, we hope to inspire new approaches for dissecting microglial mechanisms.  相似文献   
32.
Growing evidence indicates that microglia activation and a neuroinflammatory trigger contribute to dopaminergic cell loss in Parkinson’s disease (PD). Furthermore, increased density of histaminergic fibers and enhanced histamine levels have been observed in the substantia nigra of PD-postmortem brains. Histamine-induced microglial activation is mediated by the histamine-4 receptor (H4R). In the current study, gene set enrichment and pathway analyses of a PD basal ganglia RNA-sequencing dataset revealed that upregulation of H4R was in the top functional category for PD treatment targets. Interestingly, the H4R antagonist JNJ7777120 normalized the number of nigrostriatal dopaminergic fibers and striatal dopamine levels in a rotenone-induced PD rat model. These improvements were accompanied by a reduction of α-synuclein-positive inclusions in the striatum. In addition, intracerebroventricular infusion of JNJ7777120 alleviated the morphological changes in Iba-1-positive microglia and resulted in a lower tumor necrosis factor-α release from this brain region, as well as in ameliorated apomorphine-induced rotation behaviour. Finally, JNJ7777120 also restored basal ganglia function by decreasing the levels of γ-aminobutyric acid (GABA) and the 5-hydroxyindoleactic acid to serotonin (5-HIAA/5-HT) concentration ratios in the striatum of the PD model. Our results highlight H4R inhibition in microglia as a promising and specific therapeutic target to reduce or prevent neuroinflammation, and as such the development of PD pathology.  相似文献   
33.
The brain is increasingly appreciated to be a constantly rewired organ that yields age-specific behaviors and responses to the environment. Adolescence in particular is a unique period characterized by continued brain maturation, superimposed with transient needs of the organism to traverse a leap from parental dependence to independence. Here we describe how these needs require immune maturation, as well as brain maturation. Our immune system, which protects us from pathogens and regulates inflammation, is in constant communication with our nervous system. Together, neuro-immune signaling regulates our behavioral responses to the environment, making this interaction a likely substrate for adolescent development. We review here the identified as well as understudied components of neuro-immune interactions during adolescence. Synaptic pruning, neurite outgrowth, and neurotransmitter release during adolescence all regulate—and are regulated by—immune signals, which occur via blood-brain barrier dynamics and glial activity. We discuss these processes, as well as how immune signaling during this transitional period of development confers differential effects on behavior and vulnerability to mental illness.  相似文献   
34.
35.
 吗啡是临床上常用的强效镇痛药,然而长期应用会导致其镇痛效能降低,发生吗啡耐受。以往对吗啡耐受机制的研究主要集中在脊髓神经元敏化等中枢神经元机制,近年来越来越多的学者开始关注神经胶质细胞,特别是小胶质细胞和星形胶质细胞,在吗啡耐受形成中的作用。本文简要综述了神经胶质细胞参与吗啡耐受的作用机制及其治疗的研究进展,为解决临床上中重度疼痛治疗中的难点问题提供新的解决思路与依据。  相似文献   
36.
The rates of opioid use disorder during pregnancy have more than quadrupled in the last decade, resulting in numerous infants suffering exposure to opioids during the perinatal period, a critical period of central nervous system (CNS) development. Despite increasing use, the characterization and definition of the molecular and cellular mechanisms of the long-term neurodevelopmental impacts of opioid exposure commencing in utero remains incomplete. Thus, in consideration of the looming public health crisis stemming from the multitude of infants with prenatal opioid exposure entering school age, we undertook an investigation of the effects of perinatal methadone exposure in a novel preclinical model. Specifically, we examined the effects of opioids on the developing brain to elucidate mechanisms of putative neural cell injury, to identify diagnostic biomarkers and to guide clinical studies of outcome and follow-up. We hypothesized that methadone would induce a pronounced inflammatory profile in both dams and their pups, and be associated with immune system dysfunction, sustained CNS injury, and altered cognition and executive function into adulthood. This investigation was conducted using a combination of cellular, molecular, biochemical, and clinically translatable biomarker, imaging and cognitive assessment platforms. Data reveal that perinatal methadone exposure increases inflammatory cytokines in the neonatal peripheral circulation, and reprograms and primes the immune system through sustained peripheral immune hyperreactivity. In the brain, perinatal methadone exposure not only increases chemokines and cytokines throughout a crucial developmental period, but also alters microglia morphology consistent with activation, and upregulates TLR4 and MyD88 mRNA. This increase in neuroinflammation coincides with reduced myelin basic protein and altered neurofilament expression, as well as reduced structural coherence and significantly decreased fractional anisotropy on diffusion tensor imaging. In addition to this microstructural brain injury, adult rats exposed to methadone in the perinatal period have significant impairment in associative learning and executive control as assessed using touchscreen technology. Collectively, these data reveal a distinct systemic and neuroinflammatory signature associated with prenatal methadone exposure, suggestive of an altered CNS microenvironment, dysregulated developmental homeostasis, complex concurrent neural injury, and imaging and cognitive findings consistent with clinical literature. Further investigation is required to define appropriate therapies targeted at the neural injury and improve the long-term outcomes for this exceedingly vulnerable patient population.  相似文献   
37.
Prior exposure to acute and chronic stressors potentiates the neuroinflammatory and microglial pro-inflammatory response to subsequent immune challenges suggesting that stressors sensitize or prime microglia. Stress-induced priming of the NLRP3 inflammasome has been implicated in this priming phenomenon, however the duration/persistence of these effects has not been investigated. In the present study, we examined whether exposure to a single acute stressor (inescapable tailshock) induced a protracted priming of the NLRP3 inflammasome as well as the neuroinflammatory, behavioral and microglial proinflammatory response to a subsequent immune challenge in hippocampus. In male Sprague-Dawley rats, acute stress potentiated the neuroinflammatory response (IL-1β, IL-6, and NFκBIα) to an immune challenge (lipopolysaccharide; LPS) administered 8 days after stressor exposure. Acute stress also potentiated the proinflammatory cytokine response (IL-1β, IL-6, TNF and NFκBIα) to LPS ex vivo. This stress-induced priming of microglia also was observed 28 days post-stress. Furthermore, challenge with LPS reduced juvenile social exploration, but not sucrose preference, in animals exposed to stress 8 days prior to immune challenge. Exposure to acute stress also increased basal mRNA levels of NLRP3 and potentiated LPS-induction of caspase-1 mRNA and protein activity 8 days after stress.The present findings suggest that acute stress produces a protracted vulnerability to the neuroinflammatory effects of subsequent immune challenges, thereby increasing risk for stress-related psychiatric disorders with an etiological inflammatory component.Further, these findings suggest the unique possibility that acute stress might induce innate immune memory in microglia.  相似文献   
38.
The role of oxytocin (OT) as a neuropeptide that modulates social behavior has been extensively studied and reviewed, but beyond these functions, OT’s adaptive functions at birth are quite numerous, as OT coordinates many physiological processes in the mother and fetus to ensure a successful delivery. In this review we explore in detail the potential adaptive roles of oxytocin as an anti-inflammatory, protective molecule at birth for the developing fetal brain and gastrointestinal system based on evidence that birth is a potent inflammatory/immune event. We discuss data with relevance for a number of neurodevelopmental disorders, as well as the emerging role of the gut-brain axis for health and disease. Finally, we discuss the potential relevance of sex differences in OT signaling present at birth in the increased male vulnerability to neurodevelopmental disabilities.  相似文献   
39.
Minimal hepatic encephalopathy (MHE) is characterized as cognitive deficits including memory and learning dysfunctions after liver injuries or hepatic diseases. Our understandings of neurological mechanisms of MHE-associated cognitive syndromes, however, are far from complete. In the current study we generated a mouse MHE model by repetitive administrations of thioacetamide (TAA), which induced hyperammonemia plus elevated proinflammatory cytokines in both the general circulation and motor cortex. MHE mice presented prominent motor learning deficits, which were associated with excess dendritic spine pruning in the motor cortex under 2-photon in vivo microscopy. The pharmaceutical blockade of glucocorticoid receptor or suppression of its biosynthesis further rescued motor learning deficits and synaptic protein loss. Moreover, MHE mice presented microglial activation, which can be alleviated after glucocorticoid pathway inhibition. In sum, our data demonstrates corticosterone-induced microglial activation, synaptic over-pruning and motor learning impairments in MHE, providing new insights for MHE pathogenesis and potential targets of clinical interventions.  相似文献   
40.
BackgroundOur previous study reports the causal role of high mobility group box 1 (HMGB1) in the development of depression; and we find glycyrrhizic acid (GZA) can be a potential treatment for major depressive disorder (MDD) considering its inhibition of HMGB1 activity. This study aims to further explore the exact cell types that release HMGB1 in the hippocampus.MethodsWe detected the effects of microglia conditioned medium on primary astrocytes and neurons. The effects of minocycline on depressive-like behaviors were tested in BABLB/c mice after four weeks of chronic unpredictable mild stress (CUMS) exposure. Furthermore, the immunofluorescence (IF) assays, hematoxylin-eosin (HE) and TUNEL staining were used to observe hippocampal slices to evaluate the release of HMGB1. The cytoplasmic translocations of HMGB1 protein were assayed by western-blot.ResultsExposure to CUMS caused an active release of HMGB1 from microglia and neurons in the hippocampus. After minocycline administration for inhibiting the activation of microglia, both microglia and neurons reduced the release of HMGB1 and the protein level of central and peripheral HMGB1 recovered accordingly. Along with blocking the release of HMGB1, behavioral and cognitive deficits induced by CUMS were improved significantly by minocycline. In addition, the supernatant of primary microglia stimulated the secretion of HMGB1 in primary neurons, not in astrocytes, at 24 h after 4 h-LPS treatment.ConclusionAll the evidence supported our hypotheses that microglia and neurons are the main cell sources of HMGB1 release under CUMS condition, and that the release of HMGB1 by microglia may play an important role in the development of depressive-like behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号