首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   48篇
  国内免费   2篇
儿科学   4篇
妇产科学   1篇
基础医学   120篇
口腔科学   2篇
临床医学   23篇
内科学   26篇
皮肤病学   1篇
神经病学   368篇
特种医学   4篇
外科学   44篇
综合类   13篇
预防医学   20篇
眼科学   5篇
药学   90篇
中国医学   23篇
肿瘤学   3篇
  2024年   5篇
  2023年   19篇
  2022年   44篇
  2021年   102篇
  2020年   85篇
  2019年   49篇
  2018年   27篇
  2017年   35篇
  2016年   59篇
  2015年   40篇
  2014年   50篇
  2013年   32篇
  2012年   29篇
  2011年   31篇
  2010年   21篇
  2009年   23篇
  2008年   30篇
  2007年   16篇
  2006年   17篇
  2005年   11篇
  2004年   6篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有747条查询结果,搜索用时 15 毫秒
11.
【摘要】 目的 研究髓样细胞 2触发受体(TREM2)是否参与成年小鼠手术诱发的围术期神经认知障碍(PND)。方法 将20只雄性野生型C57BL/6小鼠随机分为对照组和手术组各10只,在手术前24小时对小鼠进行恐惧条件训练,恐惧条件测试(FCT)分别在术后1、3和7天进行,并采用旷场实验评估小鼠的运动能力。在最后一次行为评估后,将动物处死进行Western blot检测TREM2的表达。将40只小鼠随机分为对照组、手术组、Hsp60+手术组和TREM2 siRNA+HSP60+手术组,每组各10只。手术前30分钟将TREM2 siRNA立体定向注射入侧脑室。选择性TREM2受体激动剂HSP60,在麻醉苏醒后立即腹腔注射5μg/小鼠,按前述方法每24小时注射一次,连续7天,在手术前24小时对小鼠进行恐惧条件训练,FCT分别分别在术后1、3和7天进行,并采用旷场实验评估小鼠的运动能力。在最后一次行为评估后,一半小鼠(n=5)用于Western blot和ELISA分析,另一半(n=5)用于免疫荧光检测。结果 在异氟烷麻醉下对成年C57BL/6小鼠行胫骨骨折髓内固定术,发现该手术不会损害小鼠的运动能力,但会恶化学习和记忆功能,并降低TREM2表达。通过使用选择性TREM2激动剂HSP60,发现TREM2在小鼠脑海马组织中的表达明显增加,从而改善了学习和记忆,并减轻了小鼠的神经炎症反应。TREM2 siRNA消除了HSP60诱导的TREM2表达的增加,并逆转了HSP60诱导的小鼠学习和记忆功能以及小鼠脑神经炎症水平的改善。结论 TREM2的上调可能与减轻神经炎症和改善学习记忆功能有关,并减少PND的发生。  相似文献   
12.
Sepsis-associated encephalopathy (SAE) increases not only morbidity and mortality but has been associated with long-lasting mental impairment after hospital discharge in septic patients. Recently, studies have shown that these mental impairments are caused by infection-induced neuroinflammation. However, the role of T cells in the pathogenesis of SAE and mental impairments remains unclear. Thus, in this study, we aimed to clarify how immune cells, especially T cells, influence the development and recovery of these disorders. In the cecal slurry (CS)-induced septic mouse model, we performed three different kinds of behavioral tests, open-field test, marble burying test, and forced swimming test, and observed anxiety-like behavior in septic mice. Additionally, increased interleukin (IL)-1β and IL-6 expression levels, and infiltration of neutrophils and T cells were examined in the brain of septic mice, 10 days after sepsis onset. Twenty days after sepsis onset, the septic mice could recover the number of astrocytes. At day 30, expression levels of IL-1β and tumor necrosis factor (TNF)-α returned to normal levels in the cerebral cortex of septic mice. Interestingly, resolution of neuroinflammation and alleviation of depression were delayed in septic mice treated with FTY720, which inhibits sphingosine-1-phosphate (S1P)-dependent lymphocyte egress from lymph nodes. On analyzing the brain T cells with or without FTY720 in septic mice, the FTY720 untreated mice presented increased regulatory T cells (Treg) and Th2 cells in the brain, whereas the FTY720 treated mice demonstrated increased Th17 in the brain at day 30. Furthermore, in FTY720 treated septic mice, the number of astrocytes in the cerebral cortex remained reduced at day 30. These results suggest that infiltrated Treg and Th2 cells contribute to the attenuation SAE and alleviate SAE-induce mental disorder by resolving neuroinflammation in the chronic phase of sepsis.  相似文献   
13.
Baicalein (5,6,7-trihydroxyflavone), isolated from the root of traditional Chinese herb Scutellaria baicalensis Georgi, has anti-inflammatory and anti-oxidative activities. This study explored the protective and modulatory mechanisms of baicalein on neuroinflammation, oxidative stress and metabolic abnormality in lipopolysaccharide (LPS)-activated BV-2 cells. Our results demonstrated that treatment with baicalein remarkably restrained the production of pro-inflammatory factors including nitric oxide (NO), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in LPS-activated BV-2 cells. Moreover, baicalein significantly inhibited reactive oxygen species (ROS) production, decreased cyclooxygenase-2 (COX-2) and nuclear factor-b (NF-κB)/p65 expression. 1H NMR metabolomics analysis revealed that 12 differential metabolites were regulated by baicalein, implicated in alanine, aspartate and glutamate metabolism, glutathione metabolism, arginine and proline metabolism, D-glutamine and D-glutamate metabolism. In conclusion, these results indicated that baicalein has protective and modulatory effects on neuroinflammation and oxidative stress in LPS-activated BV-2 cells.  相似文献   
14.
15.
The role of oxytocin (OT) as a neuropeptide that modulates social behavior has been extensively studied and reviewed, but beyond these functions, OT’s adaptive functions at birth are quite numerous, as OT coordinates many physiological processes in the mother and fetus to ensure a successful delivery. In this review we explore in detail the potential adaptive roles of oxytocin as an anti-inflammatory, protective molecule at birth for the developing fetal brain and gastrointestinal system based on evidence that birth is a potent inflammatory/immune event. We discuss data with relevance for a number of neurodevelopmental disorders, as well as the emerging role of the gut-brain axis for health and disease. Finally, we discuss the potential relevance of sex differences in OT signaling present at birth in the increased male vulnerability to neurodevelopmental disabilities.  相似文献   
16.
Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures. However, the mouse offers the advantage of readily available knockout strains for mechanistic studies of acute and chronic consequences of OP-induced SE. Therefore, the main objective of this study was to determine whether a mouse model of acute diisopropylfluorophosphate (DFP) intoxication would produce acute and chronic neurotoxicity similar to that observed in rat models and humans following acute OP intoxication. Adult male C57BL/6J mice injected with DFP (9.5 mg/kg, s.c.) followed 1 min later with atropine sulfate (0.1 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.) developed behavioral and electrographic signs of SE within minutes that continued for at least 4 h. Acetylcholinesterase inhibition persisted for at least 3 d in the blood and 14 d in the brain of DFP mice relative to vehicle (VEH) controls. Immunohistochemical analyses revealed significant neurodegeneration and neuroinflammation in multiple brain regions at 1, 7, and 28 d post-exposure in the brains of DFP mice relative to VEH controls. Deficits in locomotor and home-cage behavior were observed in DFP mice at 28 d post-exposure. These findings demonstrate that this mouse model replicates many of the outcomes observed in rats and humans acutely intoxicated with OPs, suggesting the feasibility of using this model for mechanistic studies and therapeutic screening.  相似文献   
17.
A growing body of research suggests that astrocytes play roles as contributors to the pathophysiology of Alzheimer's disease (AD). Several lines of evidence propose that activated astrocytes produce and release proinflammatory molecules that may be critical for the generation of amyloid-β peptide (Aβ). However, accumulating evidence indicates that Aβ may activate astrocytes, which leads to an increase in cytokines that has been suggested to be a causative factor in the cognitive dysfunction of AD; thus, a vicious circle may be created. Intrinsic inflammatory mechanisms may provide a regulatory system that is capable of influencing the neuronal microenvironment that affects neuronal survival. In this article, we address the evidence surrounding the interactions of dysfunctional astrocytes with neighboring neurons that may initiate a cascade of events that culminates with neuronal injury and the expression of the hallmark lesions of AD. Comprehensive knowledge of the molecular mechanisms underlying the participation of astrocytes in neurodegeneration could aid the development of therapies to restore proper astrocyte function that can be used in AD patients to prevent or alleviate the progression of the disease in a more efficient and comprehensive manner.  相似文献   
18.
《Immunobiology》2020,225(4):151965
Numerous studies have shown that over-activation of microglia could cause neuroinflammation and release pro-inflammatory mediators, which could result in neurodegenerative diseases, like Parkinson’s disease, Alzheimer’s disease etc. Beta-naphthoflavone (BNF) has anti-oxidant and anti-inflammatory effects in borderline tissues, but BNF has not been reported the effect associated with neuroinflammation. Therefore, the purpose of this experiment is to inquiry the impact and mechanism of BNF on neuroinflammation. The results indicated that BNF significantly inhibited the production of pro-inflammatory mediators (inducible nitric-oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) andinterleukin-6 (IL-6)) in LPS-exposed BV-2 cells. Analysis of western blot results found that BNF accelerated the activation of AKT/Nrf-2/HO-1 signaling pathway and suppressed NF-κB pathway activation. Further study showed that BNF inhibited activation of NF-κB pathway via promoting HO-1, and SnPP IX (a HO-1 inhibitor) could inhibit anti-inflammatory function of BNF. We also found that BNF reduced the apoptosis rate of Human neuroblastoma cells (SHSY5Y) and mouse hippocampal neuron cell line (HT22) by inhibiting release of inflammatory mediators in LPS-exposed BV2 cells. In a word, our results suggested that BNF could inhibit inflammatory response via AKT/Nrf-2/HO-1-NF-κB signaling axis in BV-2 cells and exerts neuroprotective impact via inhibiting the activation of BV2 cells.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号