首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
PURPOSE: Unilateral intrahippocampal injections of kainic acid (KA) in rats produce spontaneous recurrent limbic seizures and morphologic changes in hippocampus that resemble hippocampal sclerosis in patients with medically refractory mesial temporal lobe epilepsy (MTLE), that form of temporal lobe epilepsy (TLE) associated with hippocampal sclerosis. Interictal in vivo electrophysiologic studies have revealed high-frequency (250-500 Hz) oscillations, termed fast ripples (FRs). These oscillations may uniquely occur in or adjacent to the site of hippocampal KA injection, in areas that generate spontaneous seizures. Similar field potentials also have been demonstrated in the epileptogenic region of patients with TLE. We have now characterized ictal electrographic patterns in this rat model for comparison with those in human TLE and begun to evaluate the role of FRs in the transition to ictus in the KA-treated rat. METHODS: Rats received unilateral intrahippocampal injections of KA and, after the development of spontaneous seizures, were implanted with multiple fixed and moveable microelectrodes for single unit, field potential, and EEG recording. They were then monitored by using video-EEG telemetry for several weeks to capture and evaluate electrographic and behavioral seizure types. Results were correlated with Timm's stain demonstration of mossy fiber sprouting. RESULTS: Low-voltage fast (LVF) and hypersynchronous electrographic ictal-onset patterns were seen in the KA-treated rat that resembled similar ictal-onset patterns in patients with TLE. Hypersynchronous, but not LVF, ictal discharges were associated with recurrent FRs. As in the human, hypersynchronous ictal onsets originated predominantly in hippocampus, whereas LVF ictal onsets more often involved extrahippocampal structures. LVF ictal onsets occurred during wakefulness or paradoxical sleep and were usually associated with motor behavior, whereas hypersynchronous ictal onsets occurred during slow-wave sleep or periods of immobility and were not associated with motor behavior unless there was transition to another ictal electrographic pattern. Mossy fiber sprouting did not correlate with the frequency of ictal EEG discharges exhibited by each rat but was greater in those rats that demonstrated frequent behavioral seizures. CONCLUSIONS: The electrographic features of spontaneous seizures in the KA-treated rat resemble those of patients with medically refractory TLE with respect to EEG pattern and localization. Our data suggest that hypersynchronous ictal onsets represent epileptogenic disturbances in hippocampal circuits, whereas LVF ictal onsets may involve extrahippocampal areas having more direct connections to the motor system. Hypersynchronous seizures may involve the same neuronal mechanisms that generate interictal FRs.  相似文献   

2.
Bragin A  Wilson CL  Engel J 《Epilepsia》2003,44(9):1233-1237
PURPOSE: Fast ripples (FRs) are interictal, pathological, high-frequency oscillations in the 200- to 600-Hz range, which can be recorded from limbic regions capable of generating spontaneous seizures in rodent models of epilepsy and in human mesial temporal lobe epilepsy. To evaluate the spatial stability of FR-generating brain areas over long periods, we monitored interictal FR oscillations in rats with chronic recurrent spontaneous seizures. METHODS: After unilateral intrahippocampal injection of kainic acid, 22 rats were video monitored until spontaneous behavioral seizures occurred, and then implanted with multiple hippocampal, dentate gyrus, and entorhinal cortex microelectrodes. Electrophysiological monitoring of microelectrode sites was carried out during daily 8-h recordings for periods ranging from 6 to 98 days. RESULTS: Interictal FRs were recorded from discretely localized areas, adjacent to non-FR-generating areas in dentate gyrus and entorhinal cortex. The location of interictal FR oscillations remained fixed, and the electrophysiological pattern of FRs remained the same over the time of our study. For the duration of monitoring, sites initially recording interictal FRs continued to display FR oscillations, and sites that initially did not record FRs never demonstrated FR activity. A direct relation was seen between the total number of electrode contacts recording interictal FRs and the frequency of spontaneous seizure generation (p < 0.0001). CONCLUSIONS: These results suggest that interictal FRs reflect abnormal discharges from a fixed pathologic substrate imbedded within less-epileptogenic tissue, and that spontaneous seizure frequency is dependent on the extent and distribution of this pathologic substrate.  相似文献   

3.
Objective – Intrahippocampal injection of kainic acid (KA) in rats evokes a status epilepticus (SE) and leads to spontaneous seizures. However to date, precise electroencephalographic (EEG) and clinical characterization of spontaneous seizures in this epilepsy model using long‐term video‐EEG monitoring has not been performed. Materials and Methods – Rats were implanted with bipolar hippocampal depth electrodes and a cannula for the injection of KA (0.4 μg/0.2 μl) in the right hippocampus. Video‐EEG monitoring was used to determine habitual parameters of spontaneous seizures such as seizure frequency, severity, progression and day–night rhythms. Results – Spontaneous seizures were detected in all rats with 13 out of 15 animals displaying seizures during the first eight weeks after SE. A considerable fraction (35%) of the spontaneous seizures did not generalize secondarily. Seizure frequency was quite variable and the majority of the KA‐treated animals had less than one seizure per day. A circadian rhythm was observed in all rats that showed sufficient seizures per day. Conclusions – This study shows that the characteristics of spontaneous seizures in the intrahippocampal KA model display many similarities to other SE models and human temporal lobe epilepsy.  相似文献   

4.
PURPOSE: We studied the relation between quantitative interictal subdural EEG data and visually defined ictal subdural EEG findings in children with intractable neocortical epilepsy, and determined whether interictal EEG data are predictive of ictal EEG onset zones. METHODS: Thirteen children (aged 1.2-15.4 years) underwent prolonged intracranial EEG recording, using 48- to 120-channel subdural electrodes. Three distinct 10-min segments of the continuous interictal EEG recording were selected for each patient, and the spike frequency for each channel was determined by using an automatic spike-detection program. Subsequently the average spike frequency of each electrode was compared with ictal assessment (onset, spread, and no early ictal involvement). In addition, 50 distinct interictal spikes were averaged for each patient, and the amplitude and latency after the leading spike (averaged spike showing the earliest peak) were measured for each electrode and analyzed with respect to ictal EEG findings. RESULTS: Reproducibility of the spike-frequency pattern derived from three 10-min segments was high (Kendall's W, 0.85 +/- 0.08). Electrodes showing the highest spike frequency, the highest spike amplitude, and the leading spike were found to be a part of the seizure onset in 13 of 13, 12 of 13, and 10 of 13 cases, respectively. There was significant correlation between ictal assessment and spike frequency as well as spike amplitude. A receiver operating characteristics analysis showed that a cutoff threshold at 14% of the maximal spike frequency resulted in a specificity of 0.90 and a sensitivity of 0.77 for the detection of seizure-onset electrodes. CONCLUSIONS: Quantitative interictal subdural EEG may predict ictal-onset zones in children with intractable neocortical epilepsy.  相似文献   

5.
A new sphenoidal wire electrode is described which greatly increases the clinical and diagnostic usefulness of sphenoidal electrode recordings. These very fine wire electrodes are easy to insert; they are comfortable and acceptable to the patient. In contrast to sphenoidal needle electrodes they expose the patient to no risk should he have a seizure during recording. These electrodes also allow one to extend the recording time to several days, thus increasing the chances of recording a spontaneous seizure, for instance while the patient's EEG is being recorded with a telemetry system. The extended recording time also allows for continuous automatic sampling of the interictal EEG over a period of several days. The quality and the reliability of the EEG record are also enhanced. The new sphenoidal electrodes have been used on over 100 patients and are now being used routinely on suspected temporal lobe epileptics recorded with conventional techniques, while 50 of the patients have also been recorded with a cable-telemetry seizure monitoring system which has captured 65 spontaneous seizures.  相似文献   

6.
Bragin A  Claeys P  Vonck K  Van Roost D  Wilson C  Boon P  Engel J 《Epilepsia》2007,48(10):1883-1894
RATIONALE: The goal of this study is to analyze initial slow waves (ISWs) at seizure onset in patients with refractory temporal lobe epilepsy. ISWs are a specific type of ictal EEG pattern characterized by a slow wave at the seizure onset followed by low voltage fast activity. METHODS: Investigations were carried out on 14 patients from the UCLA hospital (USA) and 10 from the Ghent University Hospital (Belgium) implanted with depth and grid electrodes for localization of the epileptogenic zone. RESULTS: Sixty-one seizures in the UCLA group and 30 seizures in the Ghent group were analyzed. Fourteen UCLA and seven Ghent patients had ISWs at seizure onset. The duration of ISWs varied between 0.3 to 6.0 s and maximum amplitude varied from 0.2 to 1.4 mV. ISWs in three of 14 UCLA patients (30% of seizures) had a consistent positive polarity at the deepest contacts that were located in the amygdala, hippocampus, or entorhinal cortex and reversed polarity outside of these brain areas (ISWs1). ISWs in 11 of 14 UCLA patients (70% of seizures) had negative polarity at the deepest electrodes and their amplitude increased toward the recording contacts located in the white matter or neocortex (ISWs2). All ISWs from the seven Ghent patients were negative in the depth contacts (ISWs2) and positive on grid electrodes at the cortical surface. ISWs1 were associated with EEG spikes at the onset and on increase in amplitude of 10-20 Hz sinusoidal activity. In contrast, ISWs2 were associated with suppression of EEG amplitude, an increase in frequency in the range of 20-50 Hz, and did not have EEG spikes at the onset. Multiunit neuronal activity showed strong synchronization of neuronal discharges during interictal spikes, but multiunit synchronization was not obvious during ISWs2. CONCLUSION: The existence of EEG spikes and phase reversal with ISWs1 indicates this type of seizure may be triggered by hypersynchronous neuronal discharges; however, seizures with ISWs2 at the onset may be triggered by different mechanisms, perhaps nonneuronal.  相似文献   

7.
Purpose:   Current evidence suggests that the mechanisms underlying depth electrode–recorded seizures beginning with hypersynchronous (HYP) onset patterns are functionally distinct from those giving rise to low-voltage fast (LVF) onset seizures. However, both groups have been associated with hippocampal atrophy (HA), indicating a need to clarify the anatomic correlates of each ictal onset type. We used three-dimensional (3D) hippocampal mapping to quantify HA and determine whether each onset group exhibited a unique distribution of atrophy consistent with the functional differences that distinguish the two onset morphologies.
Methods:   Sixteen nonconsecutive patients with medically refractory epilepsy were assigned to HYP or LVF groups according to ictal onset patterns recorded with intracranial depth electrodes. Using preimplant magnetic resonance imaging (MRI), levels of volumetrically defined HA were determined by comparison with matched controls, and the distribution of local atrophy was mapped onto 3D hippocampal surface models.
Results:   HYP and LVF groups exhibited significant and equivalent levels of HA ipsilateral to seizure onset. Patients with LVF onset seizures also showed significant contralateral volume reductions. On ipsilateral contour maps HYP patients exhibited an atrophy pattern consistent with classical hippocampal sclerosis (HS), whereas LVF atrophy was distributed more laterally and diffusely. Contralateral LVF maps also showed regions of subicular atrophy.
Discussion:   The HS-like distribution of atrophy and the restriction of HA to the ipsilateral hippocampus in HYP patients are consistent with focal hippocampal onsets, and suggest a mechanism utilizing intrahippocampal circuitry. In contrast, the bilateral distribution of nonspecific atrophy in the LVF group may reflect mechanisms involving both hippocampal and extrahippocampal networks.  相似文献   

8.
A seizure monitoring system, based on telemetry and computer techniques, has been developed to provide a reliable means of recording the patient's spontaneous seizures. It allows a patient's EEG to be monitored for hours or days with 16 channels of EEG from surface, sphenoidal or stereotaxically implanted depth electrodes, from any ward or room within the hospital. The EGG is delayed in time by up to 4 min by a mini-computer so that either the patient can push a button when he experiences his aura or others can push the button when they observe his seizure. Since the delayed EEG is written out, the preictal, ictal and postictal are recorded on paper, without many pages of uneventful interictal information. During the past 16 months, the seizure monitoring system has been used as a clinical service to examine patients with surface electrodes (42), sphenoidal wires (25) and depth electrodes (7) during 146 recording sessions for over 3200 h of monitoring time while over 200 seizures have been recorded.  相似文献   

9.
Purpose: We developed a technique to produce images of dynamic changes in ictal high‐frequency oscillations (HFOs) >40 Hz recorded on subdural electroencephalography (EEG) that are time‐locked to the ictal EEG and ictal semiology video. We applied this technique to Jacksonian seizures to demonstrate ictal HFO propagation along the homunculus in the primary sensory‐motor cortex to visualize the underlying epileptic network. Methods: We analyzed intracranial ictal EEGs from two patients with intractable Jacksonian seizures who underwent epilepsy surgery. We calculated the degrees of increase in amplitude within 40–80, 80–200, and 200–300 Hz frequency bands compared to the interictal period and converted them into topographic movies projected onto the brain surface picture. We combined these data with the ictal EEGs and video of the patient demonstrating ictal semiology. Key Findings: The ictal HFOs began in the sensory cortex and appeared concomitantly with the sensory aura. They then propagated to the motor cortex at the same time that focal motor symptoms evolved. As the seizure progressed, the ictal HFOs spread or reverberated in the rolandic region. However, even when the seizure became secondarily generalized, the ictal HFOs were confined to the rolandic region. In both cases, there was increased amplitude of higher frequency bands during seizure initiation compared to seizure progression. Significance: This combined movie showed the ictal HFO propagation corresponding to the ictal semiology in Jacksonian seizures and revealed the epileptic network involved in seizure initiation and progression. This method may advance understanding of neural network activities relating to clinical seizure generation and propagation.  相似文献   

10.
High-frequency oscillations (HFOs), termed ripples (80-200 Hz) and fast ripples (250-600 Hz), are recorded in the EEG of epileptic patients and in animal epilepsy models; HFOs are thought to reflect pathological activity and seizure onset zones. Here, we analyzed the temporal and spatial evolution of interictal spikes with and without HFOs in the rat pilocarpine model of temporal lobe epilepsy. Depth electrode recordings from dentate gyrus (DG), CA3 region, subiculum and entorhinal cortex (EC), were obtained from rats between the 4th and 15th day after a status epilepticus (SE) induced by i.p. injection of pilocarpine. The first seizure occurred 6.1 ± 2.5 days after SE (n = 7 rats). Five of 7 animals exhibited interictal spikes that co-occurred with fast ripples accounting for 4.9 ± 4.6% of all analyzed interictal spikes (n = 12,886) while all rats showed interictal spikes co-occurring with ripples, accounting for 14.3 ± 3.4% of all events. Increased rates of interictal spikes without HFOs in the EC predicted upcoming seizures on the following day, while rates of interictal spikes with fast ripples in CA3 reflected periods of high seizure occurrence. Finally, interictal spikes co-occurring with ripples did not show any specific relation to seizure occurrence. Our findings identify different temporal and spatial developmental patterns for the rates of interictal spikes with or without HFOs in relation with seizure occurrence. These distinct categories of interictal spikes point at dynamic processes that should bring neuronal networks close to seizure generation.  相似文献   

11.
Electrographic and clinical observations were made for 6 months after the injection of kainic acid (KA) solution (1 microgram in 1 microliter of phosphate buffer solution) through a chronically implanted cannula into a unilateral amygdala of freely moving and non-anesthetized cats. The control group (phosphate buffer group) showed no change during the observation period. After the injection of kainic acid, focal status epilepticus in the limbic system was observed for 3 days. Cats recovered clinically but persistent IIDs were observed at the injected site of the amygdala. These IIDs increased in amplitude and frequency and began to trigger spontaneous amygdaloid seizures. Secondary epileptogenic foci were then established in the contralateral amygdala, and amygdaloid seizures began to occur alternatively on both sides and finally trigger frequent limbic seizures from 20 to 40 days after KA injection. Spontaneous secondarily generalized seizures developed about 30 days after KA injection and occurred once or twice a week thereafter. The animals were completely normal in their behavior during the interictal phase. This is an excellent model of experimental epilepsy for the investigation of the mechanism of limbic seizure development and further study using this model will provide informations useful for the therapy of temporal lobe epilepsy in man.  相似文献   

12.
Purpose: Models of temporal lobe epilepsy are commonly utilized to study focal epileptogenesis and ictogenesis. The criteria that define animal models representative of human mesial temporal lobe may vary in different laboratories. We describe herein a focal epilepsy model of mesial temporal (hippocampal) origin that relies on the analysis of interictal and ictal electroencephalography (EEG) patterns and on their correlation with seizure symptoms and neuropathologic findings. The study is based on guinea pigs, a species seldom utilized to develop chronic epilepsy models. Methods: Young adult guinea pigs were bilaterally implanted under isoflurane anesthesia with epidural electrodes over somatosensory cortex and depth electrodes in CA1 hippocampal region. A stainless steel guide cannula was positioned unilaterally in the right dorsal hippocampus to inject 1 μl of 0.9% NaCl solution containing 1 μg kainic acid (KA). One week after surgery, continuous 24 h/day video‐EEG monitoring was performed 48 h before and every other week after KA injection, for no <1 month. EEG data were recorded wide‐band at 2 kHz. After video‐EEG monitoring, brains were analyzed for thionine and Timm staining and glial fibrillary acid protein (GFAP) immunostaining. Key Findings: Unilateral injection of KA in dorsal hippocampus of guinea pigs induces an acute nonconvulsive status epilepticus (SE) that terminates within 24 h (n = 22). Chronic seizures with very mild motor signs (undetectable without EEG monitoring) and highly variable recurrence patterns appear in 45.5% (10 of 22) KA‐treated animals, with variable delays from the initial SE. In these animals interictal events, CA1 cell loss, gliosis, and altered Timm staining pattern were observed. The induction of a chronic condition did not correlate with the duration of the nonconvulsive acute SE, but correlated with the extension and quality of neuropathologic damage. Significance: We demonstrate that a model of hippocampal (mesial temporal lobe) epilepsy can be developed in the guinea pig by intrahippocampal injection of KA. Seizure events in this model show little behavioral signs and may be overlooked without extensive video‐EEG monitoring. The establishment of a chronic epileptic condition correlates with the extension of the hippocampal damage (mainly cell loss and gliosis) and not with the intensity of the initial SE.  相似文献   

13.
PURPOSE: To determine whether hippocampal sclerosis might form an anatomical substrate for pathological high-frequency oscillations in patients with temporal lobe epilepsy (TLE). METHODS: Intracerebral wide bandwidth electroencephalogram was recorded in patients with medically intractable complex partial seizures. A computer-automated program detected interictal normal ripples (80-150 Hz) and pathologic fast ripples (FR, 151-500 Hz) from microelectrodes within hippocampus, entorhinal, and subicular cortices. Hippocampal MRI volumetric analysis and cell density measurements were correlated with rates of FR and ripple discharge. RESULTS: In all 13 patients, higher rates of FR (p = 0.03) and ratios of FR to ripple discharges (p = 0.02) were observed in sites ipsilateral to seizure onset compared with rates within contralateral non-ictal sites. Higher ratios of FR to ripple discharge were associated with smaller ipsilateral hippocampal volumes (p = 0.02) and lower fascia dentata (FD; p = 0.02) and Ammon's horn (p = 0.0005) neuron densities. While reduced FD and Ammon's horn neuron densities correlated with higher ratios of discharges, stepwise multiple regression analysis revealed that decreased neuron densities within CA1 and prosubiculum regions most strongly predicted ratios of FR to ripples (r(2)= 0.78, p = 0.008). CONCLUSIONS: In surgical patients with TLE, higher ratios of FR to ripple discharges are associated with histopathologic changes found in hippocampal sclerosis. These findings support the hypothesis that pathological alterations linked with hippocampal cell loss and synaptic reorganization promote FR and reduce ripple generation.  相似文献   

14.
目的 探讨红藻氨酸 ( KA)诱导大鼠复杂部分性癫痫发作的 EEG特点以及可能的电生理起搏点位置。方法 在立体定位指引下 ,将 EEG记录电极植入 1 2只大鼠双侧海马、额叶皮质或杏仁核中 ,其中 8只为实验组 ,4只为对照组。手术后 1周在大鼠清醒状态下 ,连续描记 KA或盐水注射后 EEG 1 2 0 min,观察 EEG波形、波幅以及频率的变化特点并记录每次电发作的起搏点位置。结果  ( 1 ) KA注射后大鼠 EEG表现出多种形式的放电波形 ,典型波形有单棘波、多棘波、多相棘波、正相棘波、棘节律、节律性慢波、棘慢波等。 ( 2 )大鼠在凝视发作以及自动症发作时海马、杏仁核和额叶皮质均有异常放电。 ( 3) KA注射后大鼠电发作起搏点不固定。 ( 4 )各导放电频率多数情况下一致 ,偶有不一致现象。 ( 5 )存在亚临床放电。结论  ( 1 ) KA注射后大鼠 EEG表现为多种形式的电发作活动 ;( 2 )大鼠在复杂部分性发作过程中不仅有边缘系统参与 ,也有边缘外额叶皮质参与 ;( 3)KA模型中 ,电发作起搏点不固定 ,KA注射后大鼠脑内可能存在一个异常的神经元网络 ,在网络中存在放电不均衡现象。  相似文献   

15.
Summary: Five patients with chronic incapacitating seizures averaging 15–5,000/month were selected for study. All patients had more than one seizure type and had received maximal doses of antiepileptic drugs (AEDs). The centromedian thalamic nucleus (CM) was stimulated electrically through bilateral multicontact platinum electrodes stereotaxically placed in CM and connected to internalized pulse generators. Electrophysiologic confirmation of electrode position included thalamically elicited recruiting responses and EEG desynchronization recorded at the scalp. Stimulation parameters were adjusted individually in the range of 450–800-μA intensity, 65 pps, 0.09 ms, in 1-min trains, alternating right and left side stimulation and with 4-min intervals delivered for 2 h/day. Quantitative evaluation included frequency of seizures/month, number of maximal interictal paroxysmal discharges, and frequency of background activities counted in selected scalp EEG samples, taken throughout the observation period (7–33 months). Significance of changes was evaluated by parametric Student's t test. Generalized tonic-clonic seizures (GTC) decreased dramatically, almost disappearing in all cases (p < 0.001), with a significant reduction in interictal paroxysmal discharges (p < 0.01) and a tendency toward an increase in EEG back-ground frequency. Other generalized seizures (atypical absences) decreased significantly, but there was no change in the number of complex partial seizures (CPS). CM stimulation is useful in control of GTC, but its beneficial effect on other seizure types has not been established.  相似文献   

16.
Bragin A  Wilson CL  Almajano J  Mody I  Engel J 《Epilepsia》2004,45(9):1017-1023
PURPOSE: To investigate the temporal relation between high-frequency oscillations (HFOs) in the dentate gyrus and recurrent spontaneous seizures after intrahippocampal kainite-induced status epilepticus. METHODS: Recording microelectrodes were implanted bilaterally in different regions of hippocampus and entorhinal cortex. A guide cannula for microinjection of kainic acid (KA) was implanted above the right posterior CA3 area of hippocampus. After recording baseline electrical activity, KA (0.4 microg/0.2 microl) was injected. Beginning on the next day, electrographic activity was recorded with video monitoring for seizures every day for 8 h/day for > or = 30 days. RESULTS: Of the 26 rats studied, 19 revealed the appearance of sharp-wave activity and HFOs in the frequency range of 80 to 500 Hz in the dentate gyrus ipsilateral to the KA injection. In the remaining seven rats, no appreciable activity was noted in this frequency range. In some rats with recurrent seizures, HFOs were in the ripple frequency range (100-200 Hz); in others, HFOs were in the fast ripple frequency range (200-500 Hz), or a mixture of both oscillation frequencies was found. The time of detection of the first HFOs after status epilepticus varied between 1 and 30 days, with a mean of 6.3 +/- 2.0 (SEM). Of the 19 rats in which HFO activity appeared, all later developed recurrent spontaneous seizures, whereas none of the rats without HFOs developed seizures. The sooner HFO activity was detected after status epilepticus, the sooner the first spontaneous seizure occurred. A significant inverse relation was found between the time to the first HFO detection and the subsequent rate of spontaneous seizures. CONCLUSIONS: A strong correlation was found between a decreased time to detection of HFOs and an increased rate of spontaneous seizures, as well as with a decrease in the duration of the latent period between KA injection and the detection of spontaneous seizures. Two types of HFOs were found after KA injection, one in the frequency range of 100 to 200 Hz, and the other, in the frequency range of 200 to 500 Hz, and both should be considered pathological, suggesting that both are epileptogenic.  相似文献   

17.
Colpan ME  Li Y  Dwyer J  Mogul DJ 《Epilepsia》2007,48(8):1594-1603
PURPOSE: A responsive electrical brain stimulation system using control feedback was investigated for the treatment of seizures. METHODS: A proportional feedback stimulation system was designed. Penicillin-induced episodic seizures were created in rat primary motor cortex. Both intracranial (proximal to seizure focus) and extracranial EEGs were monitored. Current stimulation was applied at the seizure focus by using the intracranial EEG as the current-stimulus template. Different gains (H) for determining feedback stimulus amplitudes were tested. RESULTS: The effect of feedback stimulation on seizures was initially assessed by measuring change in variance of the amplitude histogram of the intracranial EEG before and during stimulation. Mean reduction in amplitude variance during seizure activity was significant, with variance during stimulation progressively reduced as feedback gain was increased, indicating that overall suppression of seizure amplitude depended on H. Further increases in feedback gain typically produced saturating oscillations, indicating that this level of H resulted in instability. Frequency analysis of seizure and stimulation periods for each of the effective levels of H demonstrated close correlation across a large frequency domain, suggesting that the reduction in EEG seizure amplitude during feedback stimulation was possibly because of shunting of neuronal currents near electrodes as opposed to an alteration of neuronal dynamics. Although the frequency and energy responses during seizures before or during feedback stimulation remained well correlated in the delta band, this correlation progressively decreased across the theta, alpha, and beta bands. CONCLUSIONS: These results demonstrate that proportional feedback stimulation holds the promise of suppressing seizure activity. More-complicated control algorithms for generating feedback stimulation may provide further improvements in seizure suppression.  相似文献   

18.
PURPOSE: gamma-Aminobutyric acid receptor (GABA(A)r) subunit beta3-deficient mice model Angelman syndrome by displaying impaired learning, abnormal EEG with interictal spikes and slowing, myoclonus, and convulsions. The beta3-subunit deficiency causes a failure of intrathalamic reticular nucleus inhibition, leading to abnormally synchronized thalamocortical oscillations. We postulated that this pathophysiology underlies the abnormal cortical EEG and triggers interictal spikes and seizures, but extrathalamic regions also contribute to interictal spikes and seizures, so that the EEG slowing should reveal an absence-like response profile, whereas spikes and seizures have dual responsiveness to absence and partial-seizure drugs. METHODS: Recording electrodes were implanted over the parietal cortices of wild-type, heterozygotes, and homozygous null mice. In each experiment, EEG was recorded for 45 min, either drug or vehicle administered, and EEG recorded for another 3 h. Each EEG was scored for slow-wave activity, interictal spikes, and seizures by a reader blinded to treatments. RESULTS: Interictal spiking and percentage of time in EEG slowing in heterozygotes were increased by the proabsence drug baclofen (GABA(B)-receptor agonist), whereas CGP 35348 (GABA(B)-receptor antagonist) had the opposite effect. The antiabsence drug ethosuximide markedly suppressed EEG slowing and interictal spiking in heterozygote and null mice. Broad-spectrum clonazepam and valproate were more effective on interictal spiking than on EEG slowing, and fosphenytoin suppressed only interictal spiking. CONCLUSIONS: The results suggest that this model of Angelman syndrome, although not expressing typical absence seizures, is characterized by hypersynchronous thalamocortical oscillations that possess absence-like pharmacologic responsiveness and promote EEG slowing, interictal spikes, and convulsive seizures.  相似文献   

19.
Implanted radiotelemetry has been used for the measurement of cortical electroencephalogram (EEG), locomotor activity, body temperature and cardiovascular parameters. This technique allows high quality data acquisition from freely moving animals with no complications of externalised apparatus. This paper focuses on the methodology for short and long-term monitoring of epileptiform activity by simultaneous cortical EEG, hippocampal (HC) EEG and electromyogram (EMG) in rats. The circadian rhythm of temperature (CRT) was monitored after surgery to estimate the need for post surgical recovery of animals. Different placements of EMG electrodes were assessed in order to minimise artefacts and increase sensitivity. The occurrence of epileptiform ictal and interictal activity following an acute injection of either 40 mg/kg pentylenetetrazole (PTZ) or 13.8 mg/kg kainic acid (KA) was investigated. The occurrence of spontaneous seizures was also monitored 5-8 weeks after administration of KA. The present study demonstrated a sensitive method for monitoring cortical EEG, hippocampal EEG and EMG short and long-term by implantable radiotelemetry in freely moving rats.  相似文献   

20.
Sleep-epilepsy interactions were investigated in a model of temporal lobe seizures induced in cats by intra-amygdaloid kainic acid (KA) microinjections. We found that limbic status epilepticus disrupted sleep for 2 or 3 days after injection. Sleep, in turn, modulated the frequency of interictal discharges. However, such modulation was variable depending on the time elapsed since KA injection. For this and other reasons (such as the occurrence of subclinical seizures during paradoxical sleep), we postulate a dual effect--facilitatory or inhibitory--of paradoxical sleep on limbic epilepsy. A role in seizure induction for bulbopontine structures is proposed on the basis of seizure precipitation during phasic paradoxical sleep. Propagated limbic seizures and paradoxical sleep without atonia displayed similar behavioral patterns. This fact and the possibility that a seizure may substitute for paradoxical sleep, lead us to think that limbic seizures and paradoxical sleep subserve similar functions. One of them might be the elimination of a potentially neurotoxic endogenous product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号