首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cation chloride cotransporters have been proposed to play a role in the modulation of neuronal responses to gamma-aminobutyric acid (GABA). In conditions of neuronal damage, where neuronal excitability is increased, the expression of the KCC2 transporter is decreased. This is also seen in spinal cord in models of neuropathic pain. We have investigated the expression of the Na-K-Cl, and K-Cl cotransporters NKCC1 and KCC2, in dorsal root ganglion (DRG) and spinal sensory neurons during arthritis, a condition in which neuronal excitability is also increased. NKCC1 was expressed in control DRG neurons, and its expression was decreased in arthritis. Both NKCC1 and KCC2 were expressed in sensory neurons in the spinal cord. In acute arthritis, both NKCC1 and KCC2 mRNA increased in superficial but not deep dorsal horn, and this was accompanied by an increase in protein expression. In chronic arthritis, NKCC1 expression remained raised, but KCC2 mRNA and protein expression returned to control levels. Altered KCC2 and NKCC1 expression in arthritis may contribute to the control of spinal cord excitability and may represent novel therapeutic targets in the treatment of inflammatory pain.  相似文献   

3.
4.
This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (L7) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1, 2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion. Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome.  相似文献   

5.
6.
BACKGROUND: Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists and plays an important role in the treatment of pain. OBJECTIVE: To analyze the preemptive analgesic effects of different doses of ketamine on growth-associated protein-43 (GAP43) expression in dorsal root ganglion in a rat model of chronic sciatic nerve constricted injury, and to study the differences between high-dose and low-dose ketamine DESIGN: Randomized controlled animal study. SETTING: Medical College of Shantou University. MATERIALS: Thirty-five adult male Sprague Dawley rats were provided by the Experimental Animal Center of Guangzhou University of Traditional Chinese Medicine. Ketamine hydrochloride injection was provided by Hengrui Pharmaceutical Co., Ltd., Jiangsu. METHODS: This study was performed at the Immunological Laboratory, Medical College of Shantou University from September to December 2006. Model of chronic sciatic nerve constricted injury: after anesthesia, the right sciatic nerve was exposed and ligated l-cm distal to the ischiadic tuberosity with a No. 3-0 cat gut suture. Grouping and intervention: 35 rats were randomly divided into 4 groups: normal control group (n = 5), chronic constriction injury (CCI) group (n = 10), low-dose ketamine group (n = 10), and high-dose ketamine group (n = 10). Rats in the normal control group did not undergo any surgery or drug intervention. Rats in the CCI group received intraperitoneal injection of saline (1 mL), and their sciatic nerves were ligated after 10 minutes. Rats in the low-dose ketamine group underwent intraperitoneal injection of ketamine (25 mg/kg) 10 minutes prior to ligation of sciatic nerve; while, rats in the high-dose ketamine group were given intraperitoneal injection of ketamine (50 mg/kg) 10 minutes prior to ligation of sciatic nerve. On the third and the seventh days after surgery, dorsal root ganglion were resected from the sciatic nerve and cut into sections. MAIN OUTCOME MEASURES:  相似文献   

7.
In low-density, serum-free cultures of neurons from embryonic rat dorsal root ganglia, interleukin-6 supports the survival of less than one third of the neurons yet virtually all of them bear interleukin-6 alpha-receptors. A finding that might explain this selectivity is that interleukin-6 acts on sensory neurons in culture through a mechanism requiring endogenous brain-derived neurotrophic factor. Antibodies or a trkB fusion protein that block the biological activity of brain-derived neurotrophic factor synthesized by dorsal root ganglion neurons also block the survival-promoting actions of interleukin-6 on these neurons. Two results indicate that interleukin-6 influences synthesis of brain-derived neurotrophic factor in adult dorsal root ganglion neurons. Intrathecal infusion of interleukin-6 in rats increases the concentration of brain-derived neurotrophic factor mRNA in rat lumbar dorsal root ganglia. The induction of brain-derived neurotrophic factor in dorsal root ganglion neurons that is seen after nerve injury in rats or wild-type mice is severely attenuated in mice with null mutation of the interleukin-6 gene. In brief, the ability of interleukin-6 to support the survival of embryonic sensory neurons in vitro depends upon the presence of endogenous brain-derived neurotrophic factor and the induction of brain-derived neurotrophic factor in injured adult sensory neurons depends upon the presence of endogenous interleukin-6.  相似文献   

8.
The cloned vanilloid receptor VR1 can be activated by capsaicin and by thermal stimuli. The pattern of nerve terminals that contain VR1 in adult rat spinal cord does not correspond to axons that arise from a single subset of dorsal root ganglion neurons. Thus, we postulated that the basis underlying this complexity might be better understood from a developmental perspective. First, using capsaicin-induced hyperalgesia as a measure of VR1 function, we found that vanilloid receptors were functional as early as postnatal day 10 (P10), although hyperalgesia was of longer duration in adult. Interestingly, the appearance of VR1 protein in terminals of dorsal root ganglion neurons shifts over this postnatal period. From embryonic day 16 to P20, the majority of VR1 protein in the spinal cord was observed in lamina I. As animals matured, VR1 protein became more abundant in lamina II, particularly in the inner portion. Consistent with these observations, the number of dorsal root ganglion neurons coexpressing VR1 and isolectin B4 binding sites doubled while the number of neurons that had both VR1 and substance P remained relatively constant from P2 to P10. In peripheral processes, the number of VR1-positive nerve fibres and terminals in cutaneous structures in postnatal day 10 was half of that in adults. We also show that the association of VR1 with Ret is the reciprocal of the association of VR1 with Trk A. These results suggest that neurotrophins may regulate the extent to which populations of dorsal root ganglion neurons express VR1.  相似文献   

9.
It is functionally important to differentiate between primary afferent neurons with A-fibers, which are nociceptive or nonnociceptive, and C-fibers, which are mainly nociceptive. Neurochemical markers such as neurofilament 200 (NF200), substance P (SP), and isolectin B4 (IB4) have been useful to distinguish between A- and C-fiber neurons. However, the expression patterns of these markers change after peripheral nerve injury, so that it is not clear whether they still distinguish between fiber types in models of neuropathic pain. We identified neurons with Abeta-, Adelta-, and C-fibers by their conduction velocity (corrected for utilization time) in dorsal root ganglia taken from mice after a chronic constriction injury (CCI) of the sciatic nerve and control mice, and later stained them for IB4, SP, calcitonin gene-related peptide (CGRP), NF200, and neuropeptide Y (NPY). NF200 remained a good marker for A-fiber neurons, and IB4 and SP remained good markers for C-fiber neurons after CCI. NPY was absent in controls but was expressed in A-fiber neurons after CCI. After CCI, a group of C-fiber neurons emerged that expressed none of the tested markers. The size distribution of the markers was investigated in larger samples of unidentified dorsal root ganglion neurons and, together with the results from the identified neurons, provided only limited evidence for the expression of SP in Abeta-fiber neurons after CCI. The extent of up-regulation of NPY showed a strong inverse correlation with the degree of heat hyperalgesia.  相似文献   

10.
Xu C  Xu W  Xu H  Xiong W  Gao Y  Li G  Liu S  Xie J  Tu G  Peng H  Qiu S  Liang S 《Brain research bulletin》2012,87(1):37-43
Tissue injury or inflammation of the nervous system may result in chronic neuropathic pain characterized by sensitivity to painful stimuli. P2X3 receptors play a crucial role in facilitating pain transmission. Puerarin is an active compound of a traditional Chinese medicine Ge-gen, and Ge-gen soup has anti-inflammatory effects. The present research investigated the role of puerarin in the signalling of chronic neuropathic pain mediated by P2X3 receptors of rat dorsal root ganglion neurons. Chronic constriction injury (CCI) rat model was adopted. Sprague-Dawley rats were randomly divided into blank control group (Ctrl), sham group (Sham), puerarin-treated control group (Ctrl + PUE), chronic constriction injury (CCI) group and puerarin-treated CCI group (CCI + PUE). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured by the von-Frey test and the Hargreaves’ test respectively. The stain values of P2X3 protein and mRNA in L4/L5 dorsal root ganglion (DRG) were detected by immunohistochemistry, western blot and in situ hybridization. At day 4-7 after the operation of CCI rats, MWT and TWL in group CCI and CCI + PUE were lower than those in group Ctrl, Sham and Ctrl + PUE, while there was no difference among group Ctrl, Sham and Ctrl + PUE. At day 7-10 after operation, MWT and TWL in group CCI + PUE was higher than those in group CCI, but there was no significant difference between group CCI + PUE and group Ctrl (p > 0.05). At day 14 after operation, the stain values of P2X3 proteins and mRNAs in L4/L5 DRG of group CCI were higher than those in group Ctrl, Sham, Ctrl + PUE and CCI + PUE, while the stain values of P2X3 proteins and mRNAs in group CCI + PUE were significantly decreased compared with those in group CCI. Therefore, puerarin may alleviate neuropathic pain mediated by P2X3 receptors in dorsal root ganglion neurons.  相似文献   

11.
Following a unilateral chronic constriction injury of the sciatic nerve, calcitonin gene-related peptide (CGRP)-immunoreactive (IR) fiber density increases in the ipsilateral gracile nucleus, and this is more pronounced in aged (16-month) rats where the fibers are dystrophic. In this study we show that a second type of partial sciatic nerve injury, a half-transection, also induces CGRP-IR fibers in the gracile nucleus, but this effect is strongly age-dependent, being much more pronounced in 8- to 10-month-old rats than in 2- to 3-month-old rats. Dystrophic CGRP-IR fibers were rarely observed in 8- to 10-month-old animals, so the increased reaction in aged animals and axonal dystrophy are separate phenomena. Using double-labeling with fluorescent dye tracing for 8- to 10-month-old rats, we showed that neuron profiles in the dorsal root ganglion (DRG) with peripheral axons spared by the partial sciatic nerve injury were 10 times more likely to be CGRP mRNA-positive than profiles with injured peripheral axons, suggesting that spared neurons are more likely to contribute to the increase in CGRP-IR fibers in the gracile nucleus. Using combined fluorescent dye tracing with in situ hybridization for CGRP mRNA or CGRP immunostaining, we further showed that CGRP-expressing DRG neuron profiles with central projections to the gracile nucleus had peripheral axons spared by the partial nerve injury. We conclude that the increased CGRP immunoreactivity in the gracile nucleus following partial sciatic nerve injury originates from primary sensory neurons with axons spared by the injury. These neurons may still transmit cutaneous sensory information and thus the increased CGRP immunoreactive fibers in the gracile nucleus may be involved in the mechanical allodynia characteristic of neuropathic pain syndromes following partial nerve injury.  相似文献   

12.
13.
大鼠背根神经节细胞的纯化培养   总被引:1,自引:0,他引:1  
目的:在NB1培养基中建立体外胚胎大鼠背根神经节(DRG)细胞的纯化培养体系。方法:取胎鼠的背根神经节,用胰蛋白酶消化法分离成单细胞,通过差速贴壁法进行背根神经节神经元的分离纯化,在NB1中培养,用活细胞计数和神经元特异性的烯醇化酶(NSE)免疫组织化学染色相结合判定培养神经元的纯度。结果:纯化培养神经元生长状态良好,培养4天时神经元纯度为91%左右。结论:采用差速贴壁法可获得高纯度的神经元,可作为神经科学研究的重要工具。  相似文献   

14.
Intracellular chloride concentration, [Cl(-)](i), determines the polarity of GABA(A)-induced neuronal Cl(-) currents. In neurons, [Cl(-)](i) is set by the activity of Na(+), K(+), 2Cl(-) cotransporters (NKCC) such as NKCC1, which physiologically accumulate Cl(-) in the cell, and Cl(-) extruding K(+), Cl(-) cotransporters like KCC2. Alterations in the balance of NKCC1 and KCC2 activity may determine the switch from hyperpolarizing to depolarizing effects of GABA, reported in the subiculum of epileptic patients with hippocampal sclerosis. We studied the expression of NKCC (putative NKCC1) and KCC2 in human normal temporal neocortex by Western blot analysis and in normal and epileptic regions of the subiculum and the hippocampus proper using immunocytochemistry. Western blot analysis revealed NKCC and KCC2 proteins in adult human neocortical membranes similar to those in rat neocortex. NKCC and KCC2 immunolabeling of pyramidal and nonpyramidal cells was found in normal and epileptic hippocampal formation. In the transition between the subiculum with sclerotic regions of CA1, known to exhibit epileptogenic activity, double immunolabeling of NKCC and KCC2 revealed that approximately 20% of the NKCC-immunoreactive neurons do not express KCC2. In these same areas some neurons were distinctly hyperinnervated by parvalbumin (PV) positive hypertrophic basket formations that innervated mostly neurons expressing NKCC (74%) and to a lesser extent NKCC-immunonegative neurons (26%). Hypertrophic basket formations also innervated KCC2-positive (76%) and -negative (24%) neurons. The data suggest that changes in the relative expression of NKCC1 and KCC2 in neurons having aberrant GABA-ergic hyperinnervation may contribute to epileptiform activity in the subicular regions adjacent to sclerotic areas of the hippocampus.  相似文献   

15.
Alterations in the balance of K‐Na‐2Cl cotransporter (NKCC1) and Na‐Cl cotransporter (KCC2) activity may cause depolarizing effect of γ‐aminobutyric Acid (GABA), and contribute to epileptogenesis in human temporal lobe epilepsy. NKCC1 facilitates accumulation of chloride inside neurons and favors depolarizing responses to GABA. In the current pilot study we provide the first documented look at efficacy of bumetanide, a specific NKCC1 antagonist, on reduction of seizure frequency in adult patients with temporal lobe epilepsy. According to our results, seizure frequency was reduced considerably in these patients. Furthermore, epileptiform discharges decreased in two of our patients. If the efficacy of bumetanide is proven in large scale studies, it can be used as a supplemental therapy in temporal lobe epilepsy.  相似文献   

16.
The peptide cholecystokinin (CCK) has been suggested to be involved in nociception, but its exact localization at the level of the spinal cord and in spinal ganglia has been a controversial issue. Therefore the distribution of messenger RNA (mRNA) for CCK was studied by in situ hybridization using oligonucleotide probes on sections of adult rat lumbar dorsal root ganglia following unilateral section of the sciatic nerve and on sections of untreated monkey trigeminal ganglia, spinal cord and spinal ganglia from all levels. For comparison, calcitonin gene-related peptide (CGRP) mRNA was also studied in the monkey tissue using the same techniques. Peripheral sectioning of the sciatic nerve in the rat resulted in the appearance of detectable CCK mRNA in up to 30% of remaining ipsilateral L4 and L5 dorsal root ganglion neurons 3 weeks after surgery, with a distinct but more limited appearance also in the contralateral ganglia. No cells, or only single cells, could be seen in normal control rat ganglia. In contrast, in the normal monkey, ∼20% of dorsal root ganglion neurons, regardless of spinal level, and 10% of trigeminal ganglia neurons expressed mRNA for CCK. CGRP mRNA was expressed at detectable levels in ∼80% of these monkey dorsal root ganglion neurons. In the monkey spinal cord, CCK mRNA was detected in the dorsal horn and in motoneurons, whereas CGRP mRNA was only seen in motoneurons. The present results suggest that CCK peptides can be involved in sensory processing in the dorsal horn of the spinal cord in normal monkeys and in rats after peripheral nerve injury, adding one more possible excitatory peptide to the group of mediators in the dorsal horn.  相似文献   

17.
目的在背根神经节(dorsal root ganglion,DRG)中等大小感觉神经元中可以观察到钙激活氯离子流(I_(Cl(Ca)))。在坐骨神经损伤模型中,在大多数大中神经元上诱导出类似的氯离子流。本文旨在探讨引起这个离子流的分子基础。方法使用常规的定量RT-PCR方法检测在DRG中三个基因家族的表达,这三个基因家族都具有诱导I_(Cl(Ca))的特点。结果在成年小鼠的DRG中,分别显示了在正常状态和坐骨神经损伤3天后CLCA,Bestrophin和Tweety基因家族成员的转录产物。结论mBestl和Tweety2可能在损伤诱导的DRG神经元I_(Cl(Ca))中发挥作用。  相似文献   

18.
Estrogen affects the generation and transmission of neuropathic pain,but the specific regulatory mechanism is still unclear.Activation of the N-methyl-D-aspartate acid receptor 1(NMDAR1) plays an important role in the production and maintenance of hyperalgesia and allodynia.The present study was conducted to determine whether a relationship exists between estrogen and NMDAR1 in peripheral nerve pain.A chronic sciatic nerve constriction injury model of chronic neuropathic pain was established in rats.These rats were then subcutaneously injected with 17β-estradiol,the NMDAR1 antagonist D(-)-2-amino-5-phosphonopentanoic acid(AP-5),or both once daily for 15 days.Compared with injured drug na?ve rats,rats with chronic sciatic nerve injury that were administered estradiol showed a lower paw withdrawal mechanical threshold and a shorter paw withdrawal thermal latency,indicating increased sensitivity to mechanical and thermal pain.Estrogen administration was also associated with increased expression of NMDAR1 immunoreactivity(as assessed by immunohistochemistry) and protein(as determined by western blot assay) in spinal dorsal root ganglia.This 17β-estradiol-induced increase in NMDAR1 expression was blocked by co-administration with AP-5,whereas AP-5 alone did not affect NMDAR1 expression.These results suggest that 17β-estradiol administration significantly reduced mechanical and thermal pain thresholds in rats with chronic constriction of the sciatic nerve,and that the mechanism for this increased sensitivity may be related to the upregulation of NMDAR1 expression in dorsal root ganglia.  相似文献   

19.
Loss of dorsal root ganglion neuron, or injury to dorsal roots, induces permanent somatosensory defect without therapeutic option. We explored an approach to restoring hind limb somatosensory innervation after elimination of L4, L5 and L6 dorsal root ganglion neurons in rats. Somatosensory pathways were reconstructed by connecting L4, L5 and L6 lumbar dorsal roots to T10, T11 and T12 intercostal nerves, respectively, thus allowing elongation of thoracic ganglion neuron peripheral axons into the sciatic nerve. Connection of thoracic dorsal root ganglion neurons to peripheral tissues was documented 4 and 7 months after injury. Myelinated and unmyelinated fibers regrew in the sciatic nerve. Nerve terminations expressing calcitonin-gene-related-peptide colonized the footpad skin. Retrograde tracing showed that T10, T11 and T12 dorsal root ganglion neurons expressing calcitonin-gene-related-peptide or the neurofilament RT97 projected axons to the sciatic nerve and the footpad skin. Recording of somatosensory evoked potentials in the upper spinal cord indicated connection between the sciatic nerve and the central nervous system. Hind limb retraction in response to nociceptive stimulation of the reinnervated footpads and reversion of skin lesions suggested partial recovery of sensory function. Proprioceptive defects persisted. Delayed somatosensory reinnervation of the hind limb after destruction of lumbar dorsal root neurons in rats indicates potential approaches to reduce chronic disability after severe injury to somatosensory pathways.  相似文献   

20.
周围神经损伤后脊神经节感觉神经元胞体形态学的变化   总被引:1,自引:1,他引:0  
目的 研究周围神经损伤后脊神经节感觉神经元胞体形态学的变化以探讨其主要死广性质。方法 切断并原位吻合大鼠右侧坐骨神经,左侧不作任何处理,作为对照;于术后不同时间取L4-L6脊神经节作光镜和电镜观察,观察脊神经节感觉神经元胞体形态的变化。结果 光镜下,损伤的脊神经节感觉神经元胞体染色质浓染;电镜下,细胞膜内陷,分割细胞内容物成凋亡小体;而对侧脊神经节感觉神经元胞体均一、无变化。结论 大鼠坐骨神经损伤后,脊神经节感觉神经元有死亡,其胞体的形态学变化符合细胞凋亡特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号