首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Box-Behnken效应面法优化长春西汀长循环脂质体处方   总被引:5,自引:2,他引:3  
目的通过优化手段筛选最佳处方,制备长春西汀长循环脂质体。方法采用薄膜分散法制备长循环脂质体,分别以磷脂质量浓度(1ρ)、Tween80质量浓度(ρ2)、磷脂-药质量比(ms∶md)为考察对象,以包封率(Y1)、载药量(Y2)和粒径(d)为评价指标,利用三因素三水平Box-Behnken效应面设计法筛选长循环脂质体的最佳处方;透射电子显微镜考察其形态与粒径。结果长循环脂质体的包封率为85.9%;载药量18.5 mg.g-1;粒径为213.4 nm,与理论值偏差均小于10%。结论长春西汀长循环脂质体采用Box-Behnken实验设计法优化是可行的。  相似文献   

2.
目的 制备具有较高包封率和载药量且体外放置稳定的莫西沙星脂质体。方法 采用硫酸铵梯度法制备包载莫西沙星的脂质体,以粒径及其分布和包封率、载药量为指标对处方和工艺进行优化。结果 最佳制备条件为:空白脂质体中硫酸铵质量浓度70 mg/mL、磷脂质量浓度50 mg/mL、脂质体粒径120 nm左右、透析时间5 h、载药时药脂比2∶3、孵育温度40 ℃、孵育时间30 min。制备得到的莫西沙星脂质体粒径为(143.00±3.98)nm,包封率为(74.56±3.21)%,载药量为(26.39±1.88)%。结论 硫酸铵梯度法制备的莫西沙星脂质体包封率较高,粒径均一,室温放置稳定性良好。  相似文献   

3.
Box-Behnken效应面法优化石杉碱甲纳米结构脂质载体处方   总被引:1,自引:0,他引:1  
目的采用Box-Behnken效应面法筛选石杉碱甲纳米结构脂质载体最佳处方。方法采用熔融超声-高压匀质法制备石杉碱甲纳米结构脂质载体,分别以混合脂质(X1)、混合乳化剂(X2)和脂药比(X3)为考察对象,以粒径(Y1)、包封率(Y2)和载药量(Y3)为评价指标,利用三因素三水平Box-Behnken效应面设计法筛选石杉碱甲纳米结构脂质载体的最佳处方。结果按最优处方制备的纳米粒粒径为(121.67±3.21)nm、包封率为(89.18±0.28)%、载药量为(1.46±0.05)%,与预测值偏差均小于5%。结论采用Box-Behnken效应面法优化石杉碱甲纳米结构脂质载体处方是有效、可行的。  相似文献   

4.
目的:采用Box-Behnken效应面法优化丁香挥发油脂质体处方。方法:乙醇注入法制备丁香挥发油脂质体,以磷脂与丁香挥发油质量比(X1)、磷脂与胆固醇质量比(X2)、磷脂浓度(X3)为研究对象,包封率为评价指标,通过Box-Behnken效应面法筛选丁香挥发油脂质体最佳处方。结果:X_1=5,X_2=3.9,X_3=11.72mg/mL;丁香挥发油脂质体包封率为(73.74±2.27)%,与预测值偏差为0.81%;载药量为(12.79±0.43)%,粒径为(73.67±3.58)nm,PDI为0.221±0.024,Zeta电位为(-24.3±6.8)mV。结论:BoxBehnken效应面法可以简单有效的运用于丁香挥发油脂质体的处方优化。优化得到的脂质体处方合理,包封率较高,理化性质考察合格。  相似文献   

5.
目的:优化去甲斑蝥素脂质体的制备工艺,并对其药剂学性质进行评价。方法:以包封率、平均粒径及跨距为综合指标,分别考察4种制备方法即薄膜分散法、注入法、逆相蒸发法和逆相蒸发薄膜法对去甲斑蝥素脂质体包封率和粒径的影响;以磷脂的量(X1)、磷脂/胆固醇质量比(X2)、探头式超声次数(X3)、磷酸盐缓冲液稀释倍数(X4)、油水相体积比(X5)和脂类与药物的质量比(X6)为考察因素,采用均匀设计优化逆相蒸发薄膜法制备载药脂质体的制备工艺,并对最佳工艺进行验证试验。结果:以逆相蒸发薄膜法制备脂质体包封率最高;最佳工艺:X1为200mg、X2为7∶1、X3为20次、X4为50倍、X5为1∶4、X6为30∶1;验证试验中样品脂质体包封率为(42.5±1.3)%,平均粒径为(210.9±2.1)nm,跨距为0.61±0.12。结论:成功制备了去甲斑蝥素脂质体。  相似文献   

6.
目的 制备替尼泊苷磷脂复合物白蛋白纳米粒,并表征其理化性质.方法 以人血清白蛋白和蛋黄卵磷脂E80为辅料,替尼泊苷为主药,采用超声法制备替尼泊苷磷脂复合物白蛋白纳米粒及其冻干制剂.以粒径和多分散系数(PDI)为主要考察指标来优化纳米粒的处方及制备工艺;用激光粒度分析仪和透射电镜对其形态和结构进行表征;用葡聚糖凝胶柱法测定纳米粒的包封率和载药量.结果 成功制备了替尼泊苷磷脂复合物白蛋白纳米粒,平均粒径为182.3 ±11.7 nm,PDI为0.168 ±0.02,Zeta电位为-10.75±1.42 mV,包封率为82.27%±2.74%,载药量为4.29%±0.11%;冻干制剂的外观良好,复溶后的粒径和PDI均符合要求.结论 所用方法简单新颖,具有较好的应用前景.  相似文献   

7.
目的采用Box-Behnken效应面法筛选最佳处方,制备盐酸小檗碱脂质体。方法采用薄膜分散-p H梯度法制备脂质体,分别以磷脂与胆固醇质量比、脂药质量比、外水相p H值、孵化温度为考察对象,以包封率、粒径和载药量为评价指标,采用4因素3水平Box-Behnken效应面设计法筛选盐酸小檗碱脂质体的最佳处方。采用阳离子交换树脂微柱离心法测定包封率,动态激光散射法测定脂质体的粒径,并采用透射电镜观察制得的脂质体形态。结果最优处方工艺条件为磷脂与胆固醇质量比为3.38∶1,脂药质量比为22∶1,外水相p H为6.88,孵化温度为59℃。以最优处方制备的盐酸小檗碱脂质体平均粒径、包封率、载药量与预测值偏差较小。结论采用Box-Behnken效应面法优化盐酸小檗碱脂质体工艺处方是可行的。  相似文献   

8.
裴斐  宋宏新  张凤龙  赵金礼 《中国药房》2011,(17):1595-1597
目的:制备胸腺五肽脂质体并进行质量评价。方法:采用复乳法制备胸腺五肽脂质体,以聚乳酸-羟基乙酸共聚物(PLGA)及卵磷脂为成球材料、以胸腺五肽为主药制备脂质体。以明胶浓度、PLGA浓度和卵磷脂浓度为考察因素,以包封率和载药量为考察指标设计L(934)正交试验优化基质处方并进行验证试验。通过测定优化处方所制脂质体粒径、包封率、体外累积释放百分率等评价脂质体质量。结果:优化基质处方为明胶、PLGA和卵磷脂浓度分别为100、200、100mg.mL-1。所制脂质体形态完整,平均粒径为(9.03±0.83)μm,载药量与包封率分别为(1.81±0.03)与(74.4±1.4),20d的累积释药百分率达90以上。结论:所制胸腺五肽脂质体工艺简单、重现性好,包封率和载药量高,具有显著的缓释作用。  相似文献   

9.
采用星点设计-效应面法优化及制备阿霉素白蛋白纳米粒   总被引:1,自引:1,他引:0  
目的采用星点设计-效应面法优化阿霉素白蛋白纳米粒的制备工艺。方法采用去溶剂化-固化交联法制备阿霉素白蛋白纳米粒。以白蛋白质量浓度(X1:1ρ,g.L-1)、阿霉素的质量浓度(X2:2ρ,g.L-1)、pH值(X3)及白蛋白理论交联度(X4,%)为考察对象,以纳米粒平均粒径(Y1:d,nm)、zeta电位(Y2:V,mV)、载药量(Y3:w1,%)和包封率(Y4:w2,%)为评价指标,以四因素五水平的星点设计-效应面法筛选出最佳制备工艺;并采用透射电镜观察制得纳米粒的形态。结果优化后的处方工艺为:白蛋白质量浓度为17 g.L-1、阿霉素质量浓度为2 g.L-1、pH值为9、白蛋白理论交联度为125%。以此条件制得的纳米粒平均粒径为(151±0.43)nm,zeta电位为-(18.8±0.21)mV,载药量为(21.4±0.70)%,包封率为(76.9±0.21)%,均与预测值偏差较小。结论阿霉素白蛋白纳米粒的制备采用星点设计-效应面法设计并优化是可行的。  相似文献   

10.
目的通过Box-Behnken效应面优化法筛选处方,制备生物素介导的阿霉素和槲皮素的复方脂质体。方法采用薄膜分散法制备槲皮素脂质体,通过硫酸铵梯度法主动包载阿霉素。分别以磷脂与胆固醇质量比(X1)、脂质与槲皮素质量比(X_2)、硫酸铵浓度(X_3)和孵育温度(X_4)为考察指标,以阿霉素(doxorubicin,DOX)包封率(Y_1,wEE/%)、槲皮素(quercetin,QUE)包封率(Y_2,wEE/%)及粒径(Y_3,d/nm)为评价指标;采用四因素三水平Box-Behnken效应面优化法筛选脂质体处方;测定优化脂质体的粒径、zeta电位和外观形态并考察脂质体的稳定性。结果最优化处方工艺为磷脂与胆固醇质量比为3.48∶1;磷脂与槲皮素质量比为26∶1;硫酸铵浓度为0.15 mol·L~(-1);阿霉素孵育温度为50℃;载药脂质体的平均粒径为148.5 nm;zeta电位为-23.1 m V;15 d内泄露率小于20%。结论采用Box-Behnken实验设计法优化处方所得数学模型预测性良好,可以用于复方阿霉素/槲皮素脂质体的处方优化。  相似文献   

11.
Box-Behnken设计法优化奥沙利铂脂质体的处方工艺   总被引:1,自引:0,他引:1  
目的 采用Box-Behnken实验设计法优化奥沙利铂(oxaliplatin,Ox)脂质体的制备工艺。方法 以磷脂质量浓度(X1)、磷脂与Ox质量比(X2)和磷脂与胆固醇质量比(X3)为考察对象,以包封率(Y)为评价指标,采用三因素三水平的Box-Behnken实验设计筛选奥沙利铂脂质体最佳的处方。结果 最优处方是磷脂质量浓度为10.20g·L1,磷脂与药物的质量比为31∶1,脂质体膜材料中磷脂与胆固醇质量比为3.8∶1。包封率的预测值与理论值偏差较小。结论 Box-Behnken实验设计法可用于奥沙利铂脂质体的处方优化。  相似文献   

12.
The purpose of this work was to evaluate the main and interaction effects of formulation factors on the drug encapsulation efficiency of beta-estradiol biodegradable microspheres by applying response surface methodology. A secondary purpose was to obtain an optimized formula for long-term therapy of osteoporosis. A three factor, three level Box-Behnken experimental design was used to get 15 experimental runs. The independent variables were drug/polymer ratio (X1), dispersing agent concentration (X2), and deaggregating agent concentration (X3). The dependent variables were percentage encapsulation efficiency (Y1), cumulative percent drug released (Y2), and percentage yield of the microspheres (Y3). The formulations were prepared by emulsion solvent evaporation technique using ethyl acetate as organic solvent. The optimized formulation was maximized for encapsulation efficiency and further characterized for the particle size distribution, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). The mathematical relationship obtained between X1, X2, X3, and Y1 was: Y1 = -129.85 + 29.35X1 + 129.99X2 + 64.82X3 - 3.2X1X2 - 0.29X1X3 - 35.83X2X3 - 2.05X(2)(1) - 13.23X(2)(2) - 5.92X(2)(3) (R2 = 0.99) The equation showed that X1, X2, and X3 affect Y1 positively but interaction between any two of these factors affects Y1 negatively. The most significant interaction was between X2 and X3. The finding indicated that controlled releases beta-estradiol biodegradable microspheres with high encapsulation efficiency and low pulsatile release can be prepared and the quantitative response surface methodology applied helped in understanding the effects and the interaction effects between the three factors applied.  相似文献   

13.
The purpose was to prepare, characterize, and optimize a self-nanoemulsified drug delivery system (SNEDDS) of a model lipophilic compound, all-trans-retinol acetate. As part of the optimization process, the main effects, interaction effects, and quadratic effects of the formulation ingredients were investigated. METHOD: A three-factor, three-level Box-Behnken design was used to explore the quadratic response surfaces and construct a second-order polynomial model in the form: Y = A + A1X1 + A2X2+ A3X3 + A4X1X2 + A5X2X3 + A6X1X3+ A7X1(2) + A8X2(2) + A9X3(2) + E. Amount of added oil (X1), surfactant (X2), and cosurfactant (X3) were selected as the factors. Particle size (Y1), turbidity (Y2), and cumulative amount of the active ingredient emulsified after 10 (Y3) and 30 (Y4) min were the observed variables. Response surface plots were used to demonstrate the effect of factors (X1), (X2), and (X3) on the response (Y4). Amount of added soybean oil (X1), Cremophor EL (X2), and Capmul MCM-C8 (X3) showed a significant effect on the emulsification rates, as well as on the physical properties of the resultant emulsion (particle size and turbidity). Observed and predicted values of Y4 obtained from the constructed equations were in close agreement. Response surface methodology was then used to predict the levels of factors X1, X2, and X3 under the constrained variables for an optimum response. Applied constraints were 0 < Y1 < 0.5, 1 < Y2 < 20, 60 < Y3 < 80, and 90 < Y4 < 100. The predicted values were 0.0704 microm for particle size (Y1), 18.95 NTU for turbidity (Y2), 88.88% for drug release after 10 min (Y3), and 110.7% drug release after 30 min (Y4). Two new formulations were prepared according to the predicted levels. The observed and predicted values were in close agreement.  相似文献   

14.
The aim of the present research work was to systemically device a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology by employing a 3-factor, 3-level Box-Behnken statistical design. Independent variables studied were the amount of the release retardant polymers - HPMC K15M (X(1)), HPMC K100M (X(2)) and sodium carboxymethyl cellulose (X(3)). The dependent variables were the burst release in 15 min (Y(1)), cumulative percentage release of drug after 60 min (Y(2)) and hardness (Y(3)) of the tablets with constraints on the Y(2)=31-35%. Statistical validity of the polynomials was established. In vitro release and swelling studies were carried out for the optimized formulation and the data were fitted to kinetic equations. The polynomial mathematical relationship obtained Y(2)=32.91-2.30X(1)-5.69X(2)-0.97X(3)-0.41X(1)X(2)+0.21X(1)X(3)-0.92X(1)(2)-1.89X(2)(2) (r(2)=0.9944) explained the main and quadratic effects, and the interactions of factors influencing the drug release from matrix tablets. The adjusted (0.9842) and predicted values (0.9893) of r(2) for Y(2) were in close agreement. Validation of the optimization study indicated high degree of prognostic ability of response surface methodology. Tablets showed an initial burst release preceding a more gradual sustained release phase following a non-fickian diffusion process. The Box-Behnken experimental design facilitated the formulation and optimization of sustained release hydrophilic matrix systems of losartan potassium.  相似文献   

15.
The present research work aimed at development and optimisation of mucoadhesive polyherbal gels (MPG) for vaginal drug delivery. As the rheological and mucoadhesive properties of the gels correlate well to each other the prepared MPGs were optimised for maximum mucoadhesion using a relationship between the storage modulus (G') and Gel Index (GI), by employing a 3-factor, 3-level Box-Behnken statistical design. Independent variables studied were the polymer concentration (X(1)), honey concentration (X(2)) and aerosil concentration (X(3)). Aerosil has been investigated for the first time to improve the consistency of gels. The dependent variables studied were the elastic modulus, G'(Y(1)), gel index (Y(2)), and maximum detachment force (Y(3)) with applied constraints of 500相似文献   

16.
The purpose of this work was to evaluate the main and interaction effects of formulation factors on the drug encapsulation efficiency of β-estradiol biodegradable microspheres by applying response surface methodology. A secondary purpose was to obtain an optimized formula for long-term therapy of osteoporosis. A three factor, three level Box-Behnken experimental design was used to get 15 experimental runs. The independent variables were drug/polymer ratio (X1), dispersing agent concentration (X2), and deaggregating agent concentration (X3). The dependent variables were percentage encapsulation efficiency (Y1), cumulative percent drug released (Y2), and percentage yield of the microspheres (Y3). The formulations were prepared by emulsion solvent evaporation technique using ethyl acetate as organic solvent. The optimized formulation was maximized for encapsulation efficiency and further characterized for the particle size distribution, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). The mathematical relationship obtained between X1, X2, X3, and Y1 was:

Y1 = ?129.85 + 29.35X1 + 129.99X2 + 64.82X3 ? 3.2X1X2 ? 0.29X1X3 ? 35.83X2X3 ? 2.05X12 ? 13.23X22 ? 5.92X32 (R2 = 0.99)

The equation showed that X1, X2, and X3 affect Y1 positively but interaction between any two of these factors affects Y1 negatively. The most significant interaction was between X2 and X3. The finding indicated that controlled releases β-estradiol biodegradable microspheres with high encapsulation efficiency and low pulsatile release can be prepared and the quantitative response surface methodology applied helped in understanding the effects and the interaction effects between the three factors applied.  相似文献   

17.
The objectives of the present study were (1) to model the effects of process and formulation variables on in vitro release profile of a model drug dyphylline from multi-particulate beads coated with starch acetate (SA); (2) to validate the models using R2 and lack of fit values; (3) to optimize the formulation by response surface methodology (RSM); (4) to characterize the optimized product by thermal, X-ray and infrared spectroscopic analyses. Dyphylline loaded inert beads were coated using organic solution of SA with high degree of substitution. A three-factor, three-level Box-Behnken design was used for the optimization procedure with coating weight gain (X1), plasticizer concentration (X2) and curing temperature (X3) as the independent variables. The regression equation generated for Y5 (cumulative percent drug released after 12 h) was Y5 = 89.83-11.98X1 + 2.82X2 - 4.31X1(2) + 1.90X1X2. Optimization was done by maximizing drug release in 12 h and placing constraints at dissolution time points of 0.5, 1, 4 and 8 h. The drug release data of the optimized product were close to that predicted by the model. The models could explain 99% of variability in responses. Thermal, X-ray and infrared analyses suggested absence of any significant interaction of the drug with the excipients used in the formulation. SEM photographs showed the integrity of the coating layer.  相似文献   

18.
PURPOSE: Naproxen CR tablets have been obtained from its microspheres prepared by coprecipitation with Eudragit L100-55. The purpose of this work was to evaluate the main and interaction effects of deaggregating agent concentration (X1), compression pressure (X2) and amount of precipitating water (X3) on naproxen release. A secondary purpose was to obtain an optimized naproxen controlled release solid oral dosage form with a predictable 12 h drug release. METHOD: Eudragit L100-55 (10 g) was dissolved in 100 ml of ethyl alcohol, and 30g of naproxen was dispersed in it with stirring. Purified water (100mL, cooled to 4 degrees C) containing calcium chloride as a deaggregating agent was added to an alcoholic solution and homogenized. The mixture was filtered to obtain microspheres. Drug content analysis was performed spectrophotometrically at 332 nm. Tablets were prepared by compressing microspheres containing 500mg of naproxen after adding 1% magnesium stearate. Dissolution was performed by the USP specifications of naproxen tablets. A 3-factor 3-level Box-Behnken design was employed to get 15 experimental runs. The independent variables used were X1, X2 and X3. The dependent variables were dissolution at different time points with constraints on yield value and angle of repose of the microspheres, and hardness and thickness of the tablets. The dissolution constraints were placed such that the naproxen is released for 12 h by Higuchi's square root of time kinetics. RESULTS: The mathematical relationship obtained between X1, X2, X3 and the cumulative per cent of naproxen dissolved in 12 h with various constraints (Y5) was Y5 = 92.39 - 1.13X1 - 4.84X2 - 2.12X3 - 2.26X1X2 - 0.5X1X3 - 0.4X2X3 + 2.4X(1)(2) - 0.4X(2)(2) (R2 = 0.9). The equation shows that X1, X2 and X3 affected the release inversely, and the most significant interaction was between X1 and X2. Y5 has been maximized for optimization of naproxen release. CONCLUSIONS: Controlled release tablets of naproxen with predictable drug release characteristics were obtained by compressing its microspheres with Eudragit L100-55.  相似文献   

19.
The purpose of this study was to develop and optimize oral controlled-release formulations for tamsulosin hydrochloride using a combination of two cellulose ester derivatives, hydroxypropyl methylcellulose (HPMC) and hydroxypropyl methylcellulose phthalate (HPMCP), with Surelease as a coating material. A three-factor, three-level Box-Behnken design was used to prepare systematic model formulations, which were composed of three formulation variables, the content of HPMC (X(1)) and HPMCP (X(2)) and the coating level (X(3)), as independent variables. The response surface methodology (RSM) and multiple response optimization utilizing the polynomial equation were used to search for the optimal coating formulation with a specific release rate at different time intervals. The drug release percentages at 2, 3 and 5h were the target responses and were restricted to 15-30% (Y(1)), 50-65% (Y(2)) and 80-95% (Y(3)), respectively. The optimal coating formulation was achieved with 10% HPMC and 20% HPMCP at a coating level of 25%, and the observed responses coincided well with the predicted values from the RSM optimization technique. The drug release from pellets coated with the optimized formulation showed a controlled-release pattern (zero-order), in comparison with a commercial product (Harunal capsule). In conclusion, a novel, oral, controlled-release delivery system for tamsulosin hydrochloride was successfully developed by incorporating HPMC and HPMCP as coating additives into Surelease aqueous ethylcellulose dispersion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号