首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Introduction: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels.

Areas covered: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration.

Expert opinion: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

2.
Hydrogels: Swelling,Drug Loading,and Release   总被引:11,自引:0,他引:11  
Kim  Sung Wan  Bae  You Han  Okano  Teruo 《Pharmaceutical research》1992,9(3):283-290
Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. The desired kinetics, duration, and rate of solute release from hydrogels are limited to specific conditions, such as hydrogel properties, amount of incorporated drug, drug solubility, and drug–polymer interactions. This review summarizes the compositional and structural effects of polymers on swelling, loading, and release and approaches to characterize solute release behavior in a dynamic state. A new approach is introduced to compensate drug effects (solubility and loading) with the release kinetics by varying the structure of heterogeneous polymers. Modulated or pulsatile drug delivery using functional hydrogels is a recent trend in hydrogel drug delivery.  相似文献   

3.
Over the past few decades, advances in hydrogel technologies have spurred development in many biomedical applications including controlled drug delivery. Many novel hydrogel-based delivery matrices have been designed and fabricated to fulfill the ever-increasing needs of the pharmaceutical and medical fields. Mathematical modeling plays an important role in facilitating hydrogel network design by identifying key parameters and molecule release mechanisms. The objective of this article is to review the fundamentals and recent advances in hydrogel network design as well as mathematical modeling approaches related to controlled molecule release from hydrogels. In the first section, the niche roles of hydrogels in controlled release, molecule release mechanisms, and hydrogel design criteria for controlled release applications are discussed. Novel hydrogel systems for drug delivery including biodegradable, smart, and biomimetic hydrogels are reviewed in the second section. Several mechanisms have been elucidated to describe molecule release from polymer hydrogel systems including diffusion, swelling, and chemically-controlled release. The focus of the final part of this article is discussion of emerging hydrogel delivery systems and challenges associated with modeling the performance of these devices.  相似文献   

4.
Injectable, thermosensitive hydrogels, constructed from cross-linked polymers, can offset the limitations of other sustained release delivery systems, overcome constrains of available therapies, and improve patient compliance to chronic therapy. The goal of this project was to identify and evaluate such sustained release, in situ formulations that can help achieve prolonged exposure of protein therapeutics with a short systemic half-life. Natural polymers were used to develop injectable, thermosensitive in situ hydrogels and single-chain variable fragment (scFv) of trastuzumab was used as the model protein with a short half-life. The three polymer combinations tested were: (1) Chitosan and β-glycerophosphate, (2) Chitosan, β-glycerophosphate, and Hyaluronic Acid, and (3) Hyaluronic Acid and Dextran. In vitro drug release experiments were conducted, using different combinations of various polymer concentrations and different drug loading amounts, to identify optimal combinations with prolonged and controlled drug release while exhibiting minimal burst release effect. Select formulations were injected subcutaneously in normal mice to evaluate the pharmacokinetics of scFv for 14 days and identify drug release kinetics in vivo. A two-compartment PK model was also established to quantitatively characterize the release kinetics and disposition of scFv following in vivo administration of the hydrogels. The scFv was undetectable in plasma after 4 and 24 hours following intravenous and subcutaneous administration, respectively. However, all three hydrogel systems were found to provide controlled release of scFv in vivo and maintain detectable concentrations of scFv for at least 14 days. The results suggested that subcutaneous injection of thermosensitive in situ hydrogels may be used to achieve sustained exposure of protein therapeutics which have a very short half-life and thus require frequent administration.  相似文献   

5.
Fang JY  Chen JP  Leu YL  Hu JW 《Drug delivery》2008,15(4):235-243
New thermosensitive hydrogels of poly(N-isopropylacrylamide) (PNIPAAm) with chitosan (CPN) were prepared and evaluated for use in the delivery of the platinum drugs, cisplatin and carboplatin. The effects of polymers containing different ratios of chitosan on the physicochemical and drug release characteristics were examined. The sol-gel transition temperature of the hydrogels was determined by differential scanning calorimetry (DSC) and viscometry. Discrepancies in the transition temperature among the various polymer systems were more pronounced when determined by viscosity compared by DSC, with the CPN showing a higher transition temperature than PNIPAAm. The cross-sectional structure and surface topography of the hydrogels were examined by scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The incorporation of chitosan further increased the entanglement of the hydrogel network. An increase in the chitosan ratio in the polymers (CPN-H) also increased the cross-linking structure. A smoother surface of hydrogel matrices was observed for CPN compared with PNIPAAm. All hydrogels tested significantly reduced drug release compared with an aqueous solution. The release rate of platinum drugs from PNIPAAm was retarded at the late stage. CPN matrices could continuously deliver platinum drugs during the experiment. The rate of release from CPN-H was generally slower than that from hydrogels and had a lower chitosan ratio (CPN-L), presumably due to the more-tortuous pathways in the hydrogels. Thermosensitive hydrogels like those prepared in this study may be a promising carrier for the delivery of platinum drugs, as the drug release can be controlled and sustained using CPN networks.  相似文献   

6.
Vaginal drug delivery represents an attractive strategy for local and systemic delivery of drugs otherwise poorly absorbed after oral administration. The rather dense vascular network, mucus permeability and the physiological phenomenon of the uterine first-pass effect can all be exploited for therapeutic benefit. However, several physiological factors such as an acidic pH, constant secretion, and turnover of mucus as well as varying thickness of the vaginal epithelium can impact sustained drug delivery. In recent years, polymers have been designed to tackle challenges mentioned above. In particular, thermosensitive hydrogels hold great promise due to their stability, biocompatibility, adhesion properties and adjustable drug release kinetics. Here, we discuss the physiological and anatomical uniqueness of the vaginal environment and how it impacts the safe and efficient vaginal delivery and also reviewed several thermosensitive hydrogels deemed suitable for vaginal drug delivery by addressing specific characteristics, which are essential to engage the vaginal environment successfully.  相似文献   

7.
Thermosensitive micelles composed of a copolymer of methoxy polyethylene glycol (mPEG), polylactic acid (PLA), and 1,6-bis (p-carboxyphenoxy) hexane (CPH), namely methoxy polyethylene glycol-co-polylactic acid-co-aromatic anhydride (mPEG-PLCPHA), were fabricated for application as a promising hydrophilic drug carrier. The copolymer can self-assemble into micelles in PBS by hydrophobic interaction. The diameters of these micelles increased as the environmental temperature increased. An increase in viscosity with sol-to-gel transition occurred as temperature increased from room temperature to body temperature. During the in vitro degradation process, hydrogels demonstrated a more stable degradation rate. Both in vitro and in vivo cytotoxicity results showed that the materials had excellent biocompatibility due to less acidic products formation. In vitro cefazolin release profiles showed a stable release for 30 days. The hydrogel encapsulated cefazolin exhibited a good antibacterial effect. Based on these results, mPEG-PLCPHA can serve as an injectable depot gel for drug delivery.From the Clinical EditorIn this study, thermosensitive hydrogel encapsulated cefazolin was found to exhibit good antibacterial effects with sustained levels for up to 30 days, enabling the development of an injectable depot gel for long-term drug delivery.  相似文献   

8.
Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone.  相似文献   

9.
Hydrogels are widely used in drug delivery systems because they can control the release and thereby enhance the efficiency of locally delivered bioactive molecules such as therapeutic drugs, proteins, or genes. For gene delivery, localized release of plasmid DNA or polymer/DNA complexes can transfect cells and produce sustained protein production. We tested the galactosylated chitosan-graft-polyethylenimine (GC-g-PEI)/DNA complexes-loaded poly(organophosphazene) thermosensitive biodegradable hydrogel as a hepatocyte targeting gene delivery system. The poly(organophosphazene) hydrogel loaded with GC-g-PEI/DNA complexes showed low cytotoxicity and higher transfection efficiency than PEI/DNA complexes, as well as good hepatocyte specificity in vitro and in vivo. Our results indicate that poly(organophosphazene) hydrogels loaded with GC-g-PEI/DNA complexes may be a safe and efficient hepatocyte targeting gene delivery system.  相似文献   

10.
水凝胶具有良好的生物相容性和生物降解性,广泛应用于药物递送、伤口敷料和组织工程等生物医学领域。按照材料来源可分为合成材料水凝胶和天然材料水凝胶,其中天然多糖水凝胶不仅可以作为材料应用,还具有独特的药理活性和较好的机械性能,逐渐成为首选材料。动态共价键水凝胶由于其结构灵活性、自愈合性能和环境响应性备受关注。本文对采用动态键方式的天然多糖水凝胶体系进行归类和总结,并对该类水凝胶在药物递送以及组织修复方面的研究现状进行概述,以期为新型多糖水凝胶的临床应用提供借鉴。  相似文献   

11.
BACKGROUND AND THE PURPOSE OF THE STUDY: Many drugs which have narrow therapeutic window and are absorbed mainly in stomach have been developed as gastroretentive delivery system. Rosiglitazone maleate, an anti-diabetic, is highly unstable at basic pH and is extensively absorbed from the stomach. Hence there is a need to develop a gastroretentive system. In this study a superporous hydrogel was developed as a gastroretentive drug delivery system. METHODS: Chitosan/poly(vinyl alcohol) interpenetrating polymer network type superporous hydrogels were prepared using a gas foaming method employing glyoxal as the crosslinking agent for Rosiglitazone maleate. Sodium bicarbonate was applied as a foaming agent to introduce the porous structure. Swelling behaviors of superporous hydrogel in acidic solution were studied to investigate their applications for gastric retention device. The optimum preparation condition of superporous hydrogels was obtained from the gelation kinetics. FT-IR, scanning electron microscopy, porosity and swelling ratio studies were used to characterize these polymers. In vitro drug release studies were also carried out. RESULTS: The introduction of a small amount of Poly(Vinyl Alcohol) enhanced the mechanical strength but slightly reduced the swelling ratio. The prepared superporous hydrogels were highly sensitive to pH of swelling media, and showed reversible swelling and de-swelling behaviors maintaining their mechanical stability. The degradation kinetics in simulated gastric fluid showed that it had biodegradability. Swelling was dependent on the amount of chitosan and crosslinker. The drug release from superporous hydrogels was sustained for 6 hrs. MAJOR CONCLUSION: The studies showed that chitosan-based superporous hydrogels could be used as a gastroretentive drug delivery system for rosiglitazone maleate in view of their swelling and prolonged drug release characteristics in acidic pH.  相似文献   

12.
The in situ gelling hybrid hydrogel system has been reported to effectively concentrate chemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles (docetaxel-loaded mixed micelles) are able to increase the solubility of DTX in water, and then a high drug loading rate of hydrogels can be achieved by encapsulating the docetaxel-loaded mixed micelles into the hydrogels. The thermosensitive nature of DTX-MM-hydrogels (thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles) can accelerate the formation of a depot of this drug-loaded system at the site of administration. Therefore, the hydrogels provide a much slower release compared with DTX-micelles and DTX-injection. An in vivo retention study has demonstrated that the DTX-MM-hydrogels can prolong the drug retention time and in vivo trials have shown that the DTX-MM-hydrogels have a higher antitumor efficacy and systemic safety. In conclusion, the DTX-MM-hydrogels prepared in this study have considerable potential as a drug delivery system, with higher tumor inhibition effects and are less toxic to normal tissues.  相似文献   

13.
温敏水凝胶是近几年来发展比较快的一种高分子材料,属于智能水凝胶的一种。虽然迄今为止多数仍停留在实验研究阶段,但可以预见该类水凝胶在医学、农学、生物学等研究领域都有着广阔的应用前景。目前在药物控制释放、组织工程以及生物免疫等多个领域备受关注。本文结合近年来国内外对温敏水凝胶的研究报道,主要介绍了温敏水凝胶的性质及其在药物缓控释中的应用,包括其在药物缓控释制剂中应用的优点、适用的药物类型以及存在的问题等。  相似文献   

14.
In situ forming hydrogels with simple sol–gel transition are more practicable as injectable hydrogels for drug delivery and tissue regeneration. State-of-the-art in situ gelling systems can easily and efficiently be formed by different mechanisms in situ. Chitosan is a kind of natural polysaccharide that is widely exploited for biomedical applications due to its good biocompatibility, low immunogenicity and specific biological activities. Chitosan-based in situ gelling systems have already gained much attention as smart biomaterials in the development of several biomedical applications, such as for drug delivery systems and regeneration medicine. Herein, we review the typical in situ gelling systems based on chitosan and mechanisms involved in hydrogel forming, and report advances of chitosan-based in situ gels for the applications in drug delivery and tissue regeneration. Finally, development prospects of in situ forming hydrogels based on chitosan are also discussed in brief.  相似文献   

15.
海藻酸盐复合水凝胶是目前肿瘤药物递送系统材料的研究热点之一。海藻酸盐水凝胶具有良好的生物相容性、可再生的特点,然而天然海藻酸盐水凝胶因降解缓慢、凝胶不稳定等缺点使其在机体环境下可能无法实现预期的结果。海藻酸盐通过结合其他材料,并用离子交联、共价交联和自由基聚合等方法形成水凝胶,使其在癌症治疗中得到广泛应用。本文基于海藻酸盐水凝胶复合体系,综述了海藻酸盐水凝胶结构及其基本性质,重点阐述了近几年来海藻酸盐复合水凝胶在常见癌症治疗应用的研究状况,总结当前研究重点方向并讨论了海藻酸盐复合水凝目前存在问题,为进一步拓展海藻酸盐复合水凝胶在临床癌症治疗的研究提供参考。  相似文献   

16.
Qiao M  Chen D  Hao T  Zhao X  Hu H  Ma X 《Die Pharmazie》2008,63(1):27-30
Thermosensitive PLGA-PEG-PLGA triblock copolymers with the DL-lactide/glycolide molar ratio ranging from 6/1 to 15/1 were synthesized by bulk copolymerization of DL-lactide, glycolide and PEG1500. The resulting copolymers are soluble in water to form a freely flowing fluid at room temperature but become hydrogels at body temperature. The release of IL-2 from the copolymer-based hydrogel in the phosphate buffer (pH 7.2) was studied at 37 degrees C under agitation. IL-2 was released from the copolymer-based hydrogels over 20 days in vitro and the release rate decreased with increasing copolymer concentration. The change of DL-lactide/glycolide molar ratio in the PLGA block of the copolymer had little effect on the IL-2 release. The released IL-2 remained 57-90% of its original activity during the release period. To evaluate the anti-tumor effect of the IL-2 loaded copolymer, solutions were injected subcutaneously to H22 tumor-bearing mice. IL-2 loaded copolymer hydrogel for in vivo use showed good anti-tumor effect. These results indicate that the thermosensitive PLGA-PEG-PLGA triblock copolymers could be a promising platform for sustained delivery of IL-2.  相似文献   

17.
高萌  赵薇  田舸  武国宇  何艳  田燕 《中国药房》2011,(45):4282-4284
目的:评价自制瘤内注射用醋酸奥曲肽(OA)温敏凝胶的质量。方法:测定醋酸奥曲肽温敏凝胶的胶凝温度、黏度,采用反相高效液相色谱法测定样品中OA含量并考察其体外释放情况。结果:醋酸奥曲肽温敏凝胶的胶凝温度为(37.1±0.2)℃,在此温度下黏度为(4750±13)mPa·s,含量为5.1mg·mL-1,96h在磷酸盐缓冲液释放介质(pH=7.2)中体外累积释药率为(85.7±1.67)%。结论:醋酸奥曲肽温敏凝胶质量合格。  相似文献   

18.
We developed a composite system combining self-targeted carbon dots and thermosensitive in situ hydrogels for ocular drug delivery of diclofenac sodium (DS). DS-CDC-HP nanoparticles were prepared by loading DS on the surface of CDC-HP via electrostatic interactions. An orthogonal experimental design was selected to screen the optimal thermosensitive hydrogel matrices and then DS-CDC-HP nanoparticles were embedded to form the composite system. The physicochemical properties and release behavior of this system were characterized, and in vivo fluorescence imaging was carried out. Corneal penetrability and in vitro cellular studies (cytotoxicity, cell imaging and cell uptake) were performed to test the feasibility and potential of this ocular delivery system. Finally, the optimal gel matrix consisting of Poloxamer 407: Poloxamer 188: HPMC E50 was 21:1:1 (w/v %), and the gelation temperature before adding artificial tear fluid was 26.67°C and 34.29°C, respectively. This system has the characteristics of biphasic drug release. In addition, the corneal penetrability and in vivo fluorescence study indicated that corneal transmittance was enhanced and drug retention time was extended. Cellular studies revealed that the DS-CDC-HP-Gel has good cytocompatibility and CD44 targeting. In summary, this composite system combines carbon dots with hydrogels, offering new potential for ocular drug delivery.  相似文献   

19.
The effect of physical cross-linking was studied on the formation and properties of thermosensitive polymer particles of poly(N-vinylcaprolactam), PVCL, and PVCL grafted with poly(ethylene oxide) macromonomer, PVCL-graft-C(11)EO(42). Loading and release of model drugs into/from the hydrogel particles were evaluated. Thermosensitive particles were stabilized by cross-linkers, the most feasible of which was salicylic acid (SA). At 23 degrees C, below the lower critical solution temperature (LCST) of the thermosensitive polymers, stability of the hydrogels was poor, whereas at 37 degrees C stable hydrogel particles were formed. All the drugs and also the cross-linker (SA) were released more efficiently from the PVCL particles compared to the PVCL-graft-C(11)EO(42) particles. Drug concentration and pH affected clearly the rate and extent of drug release in physiological buffer. The higher drug release from the PVCL was based on the more open gel-like structure as opposed to PVCL-graft-C(11)EO(42) particles. Complex formation between the cross-linker and the polymers was due to the hydrogen bonding between the hydroxyl groups of SA and H-bond acceptors of the PVCL. In the case of PVCL-graft-C(11)EO(42), the ethylene oxide chain provided more opportunities for H-bonding in comparison to the pure PVCL, creating more stable complexes (more tightly packed particles) leading to sustained drug release.  相似文献   

20.
In the present study, a series of sustained drug delivery multiarm poly(ethylene glycol) (PEG)/silica hydrogels were prepared and characterizedThe hydrogels were formed by hydrolysis and condensation of poly(4‐arm PEG silicate) using the sol‐gel methodThe relationships between water content in the PEG/silica hydrogel and stability as well as rheological properties were evaluatedScanning electron microscopy analysis of the PEG/silica hydrogels revealed water content‐dependent changes in microstructureAn increase in water content resulted in larger pores within the hydrogel, longer gelation time and higher viscosityThe PEG/silica hydrogels were loaded with dexamethasone (DMS) or dexamethasone sodium phosphate (DMSP), drugs that are hydrophobic and hydrophilic in nature, respectivelyEvaluation of in vitro release revealed a zero‐order release profile for DMS over the first 6 days, suggesting that degradation of the silica hydrogel matrix was the primary mechanism of drug releaseIt was also found that the drug‐release profile could be tailored by varying the water content used during hydrogel preparationIn contrast, more than 90% of DMSP was released within 1 h, suggesting that DMSP release was only controlled by diffusionOverall, results from this study indicate that PEG/silica hydrogels may be promising drug‐eluting depot materials for the sustained delivery of hydrophobic, ophthalmic drugs© 2013 Wiley Periodicals, Incand the American Pharmacists Association J Pharm Sci 103:216–226, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号