首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene glycol (PEG) hydrogels are widely used in a variety of biomedical applications, including matrices for controlled release of biomolecules and scaffolds for regenerative medicine. The design, fabrication, and characterization of PEG hydrogels rely on the understanding of fundamental gelation kinetics as well as the purpose of the application. This review article will focus on different polymerization mechanisms of PEG-based hydrogels and the importance of these biocompatible hydrogels in regenerative medicine applications. Furthermore, the design criteria that are important in maintaining the availability and stability of the biomolecules as well as the mechanisms for loading of biomolecules within PEG hydrogels will also be discussed. Finally, we overview and provide a perspective on some of the emerging novel design and applications of PEG hydrogel systems, including the spatiotemporal-controlled delivery of biomolecules, hybrid hydrogels, and PEG hydrogels designed for controlled stem cell differentiation.  相似文献   

2.
In situ forming hydrogels with simple sol–gel transition are more practicable as injectable hydrogels for drug delivery and tissue regeneration. State-of-the-art in situ gelling systems can easily and efficiently be formed by different mechanisms in situ. Chitosan is a kind of natural polysaccharide that is widely exploited for biomedical applications due to its good biocompatibility, low immunogenicity and specific biological activities. Chitosan-based in situ gelling systems have already gained much attention as smart biomaterials in the development of several biomedical applications, such as for drug delivery systems and regeneration medicine. Herein, we review the typical in situ gelling systems based on chitosan and mechanisms involved in hydrogel forming, and report advances of chitosan-based in situ gels for the applications in drug delivery and tissue regeneration. Finally, development prospects of in situ forming hydrogels based on chitosan are also discussed in brief.  相似文献   

3.
INTRODUCTION: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels. AREAS COVERED: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration. EXPERT OPINION: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

4.
Introduction: Controlled drug delivery has been widely applied in areas such as cancer therapy and tissue regeneration. Thermosensitive hydrogel-based drug delivery systems have increasingly attracted the attention of the drug delivery community, as the drugs can be readily encapsulated and released by the hydrogels.

Areas covered: Thermosensitive hydrogels that can serve as drug carriers are discussed in this paper. Strategies used to control hydrogel properties, in order to tailor drug release kinetics, are also reviewed. This paper also introduces applications of the thermosensitive hydrogel-based drug delivery systems in cancer therapy and tissue regeneration.

Expert opinion: When designing a drug delivery system using thermosensitive hydrogels, one needs to consider what type of thermosensitive hydrogel needs to be used, and how to manipulate its properties to meet the desired drug release kinetics. For material selection, both naturally derived and synthetic thermosensitive polymers can be used. Various methods can be used to tailor thermosensitive hydrogel properties in order to achieve the desired drug release profile.  相似文献   

5.
Percutaneous coronary intervention (PCI) has become a highly effective alternative for the treatment of coronary artery disease. The use of stents has reduced the rates of restenosis by preventing elastic recoil and negative remodeling, however neointima formation still remains an issue. Local drug delivery is an attractive option to maintain effective drug concentrations at the site of arterial injury without risking systemic toxicity. Drug-eluting stents (DESs) are implanted to provide local drug delivery to combat neointima formation by slowing cell proliferation and migration. However, problems still remain with DES use including the non-specificity of therapeutics, incomplete endothelialization leading to late thrombosis, necessity for longer term anti-platelet drug use, and local hypersensitivity to polymer delivery matrices. This review describes recent advances in local drug delivery for the prevention of restenosis. Many different drug therapeutics have been considered, as well as the material properties of the drug delivery systems. Systems for delivery include DESs, balloon catheters, polymeric cuffs and nanoparticles. Our own experience designing a controlled release device for a new therapeutic agent, Serp-1, an anti-inflammatory protein, is briefly presented. The release of Serp-1 can be extended using diffusion controlled release from physically crosslinked poly(vinyl alcohol) hydrogels, where its release properties can be tuned by the processing parameters of the hydrogel.  相似文献   

6.
Chitosan-based hydrogels for controlled, localized drug delivery   总被引:2,自引:0,他引:2  
Hydrogels are high-water content materials prepared from cross-linked polymers that are able to provide sustained, local delivery of a variety of therapeutic agents. Use of the natural polymer, chitosan, as the scaffold material in hydrogels has been highly pursued thanks to the polymer's biocompatibility, low toxicity, and biodegradability. The advanced development of chitosan hydrogels has led to new drug delivery systems that release their payloads under varying environmental stimuli. In addition, thermosensitive hydrogel variants have been developed to form a chitosan hydrogel in situ, precluding the need for surgical implantation. The development of these intelligent drug delivery devices requires a foundation in the chemical and physical characteristics of chitosan-based hydrogels, as well as the therapeutics to be delivered. In this review, we investigate the newest developments in chitosan hydrogel preparation and define the design parameters in the development of physically and chemically cross-linked hydrogels.  相似文献   

7.
Environmentally sensitive hydrogels have enormous potential in various applications. Some environmental variables, such as low pH and elevated temperatures, are found in the body. For this reason, either pH-sensitive and/or temperature-sensitive hydrogels can be used for site-specific controlled drug delivery. Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors as well as drug delivery systems. Light-sensitive, pressure-responsive and electro-sensitive hydrogels also have the potential to be used in drug delivery and bioseparation. While the concepts of these environment-sensitive hydrogels are sound, the practical applications require significant improvements in the hydrogel properties. The most significant weakness of all these external stimuli-sensitive hydrogels is that their response time is too slow. Thus, fast-acting hydrogels are necessary, and the easiest way of achieving that goal is to make thinner and smaller hydrogels. This usually makes the hydrogel systems too fragile and they do not have mechanical strength necessary in many applications. Environmentally sensitive hydrogels for drug delivery applications also require biocompatibility. Synthesis of new polymers and crosslinkers with more biocompatibility and better biodegradability would be essential for successful applications. Development of environmentally sensitive hydrogels with such properties is a formidable challenge. If the achievements of the past can be extrapolated into the future, however, it is highly likely that responsive hydrogels with a wide array of desirable properties can be made.  相似文献   

8.
Environment-sensitive hydrogels for drug delivery.   总被引:44,自引:0,他引:44  
Environmentally sensitive hydrogels have enormous potential in various applications. Some environmental variables, such as low pH and elevated temperatures, are found in the body. For this reason, either pH-sensitive and/or temperature-sensitive hydrogels can be used for site-specific controlled drug delivery. Hydrogels that are responsive to specific molecules, such as glucose or antigens, can be used as biosensors as well as drug delivery systems. Light-sensitive, pressure-responsive and electro-sensitive hydrogels also have the potential to be used in drug delivery and bioseparation. While the concepts of these environment-sensitive hydrogels are sound, the practical applications require significant improvements in the hydrogel properties. The most significant weakness of all these external stimuli-sensitive hydrogels is that their response time is too slow. Thus, fast-acting hydrogels are necessary, and the easiest way of achieving that goal is to make thinner and smaller hydrogels. This usually makes the hydrogel systems too fragile and they do not have mechanical strength necessary in many applications. Environmentally sensitive hydrogels for drug delivery applications also require biocompatibility. Synthesis of new polymers and crosslinkers with more biocompatibility and better biodegradability would be essential for successful applications. Development of environmentally sensitive hydrogels with such properties is a formidable challenge. If the achievements of the past can be extrapolated into the future, however, it is highly likely that responsive hydrogels with a wide array of desirable properties can be made.  相似文献   

9.
Hydrogels: from controlled release to pH-responsive drug delivery   总被引:4,自引:0,他引:4  
Hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Besides exhibiting swelling-controlled drug release, hydrogels also show stimuli-responsive changes in their structural network and hence, the drug release. Because of large variations in physiological pH at various body sites in normal as well as pathological conditions, pH-responsive polymeric networks have been extensively studied. This review highlights the use of hydrogels (a class of polymeric systems) in controlled drug delivery, and their application in stimuli-responsive, especially pH-responsive, drug release.  相似文献   

10.
Intelligent drug delivery systems: polymeric micelles and hydrogels   总被引:1,自引:0,他引:1  
Advanced drug delivery systems try to adjust the site and/or the rate of the release to the physiological conditions of the patient, to the progression of the illness, or to the circadian rhythms. Being different from classical pre-programmed controlled release dosage forms, the new devices aim to provide the drug release profile best for the needs of each patient. Intelligent drug delivery systems are mostly based on stimuli-responsive polymers which sense a change in a specific variable and activate the delivery; this phenomenon being reversible. This review reports on recent advances in the development of open-loop and closed-loop control systems based on stimuli-responsive polymers and their application in the drug delivery field as pulsatile and self-regulated devices. The aim of this review is to describe the most recent advances in the development of intelligent micelles and hydrogels which are sensitive to pH, specific molecules (with a mention to the molecular imprinting), temperature, irradiation or electric field, and the applications of which these mechanisms are intended.  相似文献   

11.
Modeling of drug release from polymeric delivery systems--a review   总被引:3,自引:0,他引:3  
Polymeric drug delivery platforms have been receiving increasing attention in the past decade. The pharmaceutical industry is evaluating modes of delivery for their prized therapeutics at every step of the design cycle. Not only can the drug delivery platform transport drug molecules effectively, it can also improve patient compliance, offer greater patient convenience, and extend product lifecycles as patents expire. A large number of successful drug delivery systems have been developed as a result of an almost arbitrary selection of constituents and configurations. However, the development of advanced drug delivery systems relies on a judicious and careful selection of components, configurations, and geometries, which can be facilitated through mathematical modeling of controlled release systems. Mathematical modeling aids in predicting the drug release rates and diffusion behavior from these systems by the solution of an appropriate model, thereby reducing the number of experiments needed. It also aids in understanding the physics of a particular drug transport phenomenon, thus facilitating the development of new pharmaceutical products. The objective of this article is to review the spectrum of mathematical models that have been developed to describe drug release from polymeric controlled release systems. The mathematical models presented in this article have been grouped under diffusion controlled systems, swelling controlled systems, and erosion controlled systems as proposed by Langer and Peppas. Simple empirical or semi-empirical models and complex mechanistic models that consider diffusion, swelling, and erosion processes simultaneously are presented.  相似文献   

12.
Introduction: Gene delivery from hydrogel biomaterials provides a fundamental tool for a variety of clinical applications including regenerative medicine, gene therapy for inherited disorders and drug delivery. The high water content and mild gelation conditions of hydrogels support their use for gene delivery by preserving activity of lentiviral vectors and acting to shield vectors from any host immune response.

Areas covered: Strategies to control lentiviral entrapment within and retention/release from hydrogels are reviewed. The authors discuss the ability of hydrogel design parameters to control the transgene expression profile and the capacity of hydrogels to protect vectors from (and even modulate) the host immune response.

Expert opinion: Delivery of genetic vectors from scaffolds provides a unique opportunity to capitalize on the potential synergy between the biomaterial design for cell processes and gene delivery. Hydrogel properties can be tuned to directly control the events that determine the tissue response to controlled gene delivery, which include the extent of cell infiltration, preservation of vector activity and vector retention. While some design parameters have been identified, numerous opportunities for investigation are available in order to develop a complete model relating the biomaterial properties and host response to gene delivery.  相似文献   

13.
Introduction: Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure–function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release.

Areas covered: An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence–structure–function relationships, stimuli-responsive features and current and potential drug delivery applications.

Expert opinion: The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.  相似文献   

14.
Hydrogels: Swelling,Drug Loading,and Release   总被引:11,自引:0,他引:11  
Kim  Sung Wan  Bae  You Han  Okano  Teruo 《Pharmaceutical research》1992,9(3):283-290
Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. The desired kinetics, duration, and rate of solute release from hydrogels are limited to specific conditions, such as hydrogel properties, amount of incorporated drug, drug solubility, and drug–polymer interactions. This review summarizes the compositional and structural effects of polymers on swelling, loading, and release and approaches to characterize solute release behavior in a dynamic state. A new approach is introduced to compensate drug effects (solubility and loading) with the release kinetics by varying the structure of heterogeneous polymers. Modulated or pulsatile drug delivery using functional hydrogels is a recent trend in hydrogel drug delivery.  相似文献   

15.
BACKGROUND AND THE PURPOSE OF THE STUDY: Many drugs which have narrow therapeutic window and are absorbed mainly in stomach have been developed as gastroretentive delivery system. Rosiglitazone maleate, an anti-diabetic, is highly unstable at basic pH and is extensively absorbed from the stomach. Hence there is a need to develop a gastroretentive system. In this study a superporous hydrogel was developed as a gastroretentive drug delivery system. METHODS: Chitosan/poly(vinyl alcohol) interpenetrating polymer network type superporous hydrogels were prepared using a gas foaming method employing glyoxal as the crosslinking agent for Rosiglitazone maleate. Sodium bicarbonate was applied as a foaming agent to introduce the porous structure. Swelling behaviors of superporous hydrogel in acidic solution were studied to investigate their applications for gastric retention device. The optimum preparation condition of superporous hydrogels was obtained from the gelation kinetics. FT-IR, scanning electron microscopy, porosity and swelling ratio studies were used to characterize these polymers. In vitro drug release studies were also carried out. RESULTS: The introduction of a small amount of Poly(Vinyl Alcohol) enhanced the mechanical strength but slightly reduced the swelling ratio. The prepared superporous hydrogels were highly sensitive to pH of swelling media, and showed reversible swelling and de-swelling behaviors maintaining their mechanical stability. The degradation kinetics in simulated gastric fluid showed that it had biodegradability. Swelling was dependent on the amount of chitosan and crosslinker. The drug release from superporous hydrogels was sustained for 6 hrs. MAJOR CONCLUSION: The studies showed that chitosan-based superporous hydrogels could be used as a gastroretentive drug delivery system for rosiglitazone maleate in view of their swelling and prolonged drug release characteristics in acidic pH.  相似文献   

16.
In first unit of running was described the properties, method the obtention and kinds sensitive on factors such how the temperature, pH, the electrolytes, the chosen substances, light, of hydrogels and hydrogel delivery systems. The following study is a review of literature related to application of hydrogel as healing substances carriers, possibility of application of hydrogels in oral, applied on skin and the rectal, vaginal systems of release, applied on nasal as well as passed to eyes and parenteral. The utilization the hydrogels in construction the new systems of release the substance allows to remain the aspect ratio time of substance at the application place, the obtainment of prolonged release the medicine, by parallel of applied dose and the system undesirable effects. The hydrogels on the basis of were received the form of medicine about controlled release the substance, bioadhesive drug carriers as well targetable devices of therapeutic agents.  相似文献   

17.
Fang JY  Chen JP  Leu YL  Hu JW 《Drug delivery》2008,15(4):235-243
New thermosensitive hydrogels of poly(N-isopropylacrylamide) (PNIPAAm) with chitosan (CPN) were prepared and evaluated for use in the delivery of the platinum drugs, cisplatin and carboplatin. The effects of polymers containing different ratios of chitosan on the physicochemical and drug release characteristics were examined. The sol-gel transition temperature of the hydrogels was determined by differential scanning calorimetry (DSC) and viscometry. Discrepancies in the transition temperature among the various polymer systems were more pronounced when determined by viscosity compared by DSC, with the CPN showing a higher transition temperature than PNIPAAm. The cross-sectional structure and surface topography of the hydrogels were examined by scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The incorporation of chitosan further increased the entanglement of the hydrogel network. An increase in the chitosan ratio in the polymers (CPN-H) also increased the cross-linking structure. A smoother surface of hydrogel matrices was observed for CPN compared with PNIPAAm. All hydrogels tested significantly reduced drug release compared with an aqueous solution. The release rate of platinum drugs from PNIPAAm was retarded at the late stage. CPN matrices could continuously deliver platinum drugs during the experiment. The rate of release from CPN-H was generally slower than that from hydrogels and had a lower chitosan ratio (CPN-L), presumably due to the more-tortuous pathways in the hydrogels. Thermosensitive hydrogels like those prepared in this study may be a promising carrier for the delivery of platinum drugs, as the drug release can be controlled and sustained using CPN networks.  相似文献   

18.
Pulsatile drug release control using hydrogels.   总被引:15,自引:0,他引:15  
Current research in the field of drug delivery devices, by which pulsed and/or pulsatile release is achieved, has been intensified. In this article several types of drug delivery systems using hydrogels are discussed that showed pulsed and/or pulsatile drug delivery characteristics. As is frequently found in the living body, many vital functions are regulated by pulsed or transient release of bioactive substances at a specific site and time. Thus it is important to develop new drug delivery devices to achieve pulsed delivery of a certain amount of drugs in order to mimic the function of the living systems, while minimizing undesired side effects. Special attention has been given to the thermally responsive poly(N-isopropylacrylamide) and its derivative hydrogels. Thermal stimuli-regulated pulsed drug release is established through the design of drug delivery devices, hydrogels, and micelles. Development of modified alginate gel beads with pulsed drug delivery characteristic is also described in this article.  相似文献   

19.
Introduction: Oral delivery of therapeutics, particularly protein-based pharmaceutics, is of great interest for safe and controlled drug delivery for patients. Hydrogels offer excellent potential as oral therapeutic systems due to inherent biocompatibility, diversity of both natural and synthetic material options and tunable properties. In particular, stimuli-responsive hydrogels exploit physiological changes along the intestinal tract to achieve site-specific, controlled release of protein, peptide and chemotherapeutic molecules for both local and systemic treatment applications.

Areas covered: This review provides a wide perspective on the therapeutic use of hydrogels in oral delivery systems. General features and advantages of hydrogels are addressed, with more considerable focus on stimuli-responsive systems that respond to pH or enzymatic changes in the gastrointestinal environment to achieve controlled drug release. Specific examples of therapeutics are given. Last, in vitro and in vivo methods to evaluate hydrogel performance are discussed.

Expert opinion: Hydrogels are excellent candidates for oral drug delivery, due to the number of adaptable parameters that enable controlled delivery of diverse therapeutic molecules. However, further work is required to more accurately simulate physiological conditions and enhance performance, which is important to achieve improved bioavailability and increase commercial interest.  相似文献   

20.
The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号