首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
目的建立符合解剖结构的头颈三维动力学有限元模型,研究冲击力作用下头颈部动力学响应。方法采用中国成年男性志愿者颈部CT扫描图像,获取颈椎三维点云数据,通过有限元前处理软件ICEM-CFD和Hyper Mesh建立颈部有限元模型。模型包括椎骨、椎间盘、小关节、韧带和软骨等组织,结合已建立并验证的头部有限元模型,装配成具有详细解剖结构的人体头颈部有限元模型。结果模型参考公开发表的头颈部轴向冲击实验数据进行验证,其颈部变形、头部加速度、接触力曲线以及损伤部位与实验数据吻合较好。结论动力学三维有限元模型可用于汽车安全、运动学损伤等领域人体头颈部的动态响应和损伤机制研究。  相似文献   

2.
运用ANSYS ICEM CFD以及HYPERMESH软件对10岁儿童头部几何模型进行合理的网格划分,获得具有高度解剖学细节的10岁儿童头部有限元模型。利用MADYMO软件自带的假人,模拟一起典型跌落事故中,受伤儿童从3个不同高度跌落时人体的动力学响应过程,并计算头部与地面碰撞接触瞬间的方位和速度等运动学参数。然后将这些参数输入到10岁儿童头部有限元模型中,模拟头部与地面的碰撞过程,并分析与损伤相关的生物力学参数。结果表明,颅骨的最大应力和最大应变分布在枕骨右侧,与碰撞点的位置较为吻合,但均未超过颅骨的耐受极限。利用颅内压力可较好地预测脑组织的损伤程度,而利用脑组织的von mises应力可较好地判断脑组织的损伤位置。事故重建的结果表明,该模型具有较好的生物逼真度,可以用于儿童头部损伤生物力学的研究。  相似文献   

3.
目的 为了研究头部在钝器作用下的生物力学响应及损伤机理。 方法 利用CT图像数据和MRI图像数据对头部骨骼与内部软组织进行几何重建,然后画分网格,构建颅脑有限元模型。另一方面,对连于躯干的头部标本进行10 m/s的低速冲击,测试冲击部位接触力、顶部应变及冲击的对侧(枕部)加速度。把构建的有限元模型导入MADYMO软件进行相同条件下模拟仿真,从输出模块里输出相应部位的结果。 结果 仿真结果表明模型的头部接触力、顶部应变、对撞侧加速度与头部标本冲击实验测得值能较好吻合。 结论 建立的头部有限元模型及采用的仿真方法可满足头部钝器损伤的仿真研究需要。  相似文献   

4.
目的构建详细的1岁学步儿童头部有限元模型,探究其颅脑损伤机制,完善人体有限元生物力学模型数据库。方法基于我国1岁儿童真实详细的头部CT数据,借助医学软件Mimics获得头部几何结构数据,利用逆向工程软件划分NURBS曲面片和构建工程模型,利用有限元前处理软件划分网格,参照解剖学和尸体实验等数据,验证1岁学步儿童头部有限元模型的有效性并初步分析其损伤机制。结果构建了中国男性1岁儿童头部有限元模型,模型包括并区分了大脑及小脑的灰质和白质、海马体、囟门、矢状骨缝、冠状骨缝、脑干、脑室等,几何尺寸符合解剖学统计数据。利用头部模型重构了儿童头部静态压缩尸体实验和跌落尸体实验,结果表明,该头部模型与尸体实验表现了相近的力学特征,验证了模型的有效性。计算表明不同压缩速率下颅骨刚度不同,会导致不同损伤结果。结论所构建的包含详细解剖学结构的1岁儿童头部有限元模型具有较高的生物仿真度,借助构建的模型可分析深部脑组织各部位的详细损伤情况,特别是闭合性颅脑损伤,为相关研究及临床应用提供有效的工具和手段。  相似文献   

5.
目的通过有限元方法研究颅骨厚度对颅内力学参数的影响。方法选取第5百分位女性头部进行CT扫描,构建生物仿真度较高的头部有限元模型,通过重构尸体试验验证所建模型。建立不同颅骨厚度的头部有限元模型,进行多组试验,对比颅内各项力学参数。结果相同头部尺寸下,随着颅骨厚度减小,颅内压负值受到影响较大,呈现下降趋势;颅内压正值受到影响较小,但是呈现上升趋势。脑组织剪切力、von Mises应力会相对增大,且增长幅度较大。结论相同头部尺寸下,颅骨厚度在一定程度上会影响头部损伤,颅骨厚度小的人相较颅骨厚度大的人更容易受伤。  相似文献   

6.
人体跟骨冲击损伤的生物力学研究   总被引:4,自引:0,他引:4  
目的探讨人体跟骨在冲击载荷作用下跟骨损伤的机制,为指导临床手术、固定和康复服务。方法建立跟骨动力学实验模型,采集20例新鲜人体尸跟骨标本,进行冲击实验。结果根据实验结果,得到了高速冲击载荷作用下人体跟骨的动态冲击响应,测量了人体跟骨冲击动力学性质,跟骨压缩性应变形成的粉碎性骨折。结论结果表明有必要建立人体跟骨损伤标准,包括跟骨生物力学冲击响应、骨粘弹性性质、决定伤害容限,评估损伤防护体系。  相似文献   

7.
目的针对目前对儿童颅脑组织材料参数的不确定性,研究直接冲击载荷条件下颅脑组织材料参数对儿童头部冲击响应的影响。方法应用已验证的3岁儿童头部有限元模型进行冲击仿真实验,采用正交实验设计和方差分析对儿童颅脑组织材料进行参数分析。结果颅骨弹性模量对儿童头部冲击响应具有显著性影响,随着颅骨弹性模量的增加,头部撞击侧颅内压力显著减小(P=0.000),对撞侧颅内压力显著增大(P=0.000),颅骨最大Von Mises应力显著增大(P=0.000)。脑组织的线性黏弹性材料参数对儿童头部冲击响应同样具有显著性影响,随着脑组织短效剪切模量的增加,脑组织最大主应变显著减小(P=0.000),脑组织最大剪应力则显著增加(P=0.000)。结论参数分析结果可为今后儿童头部有限元模型的材料选取提供参考依据,进而提升模型在预测临床上无法通过脑CT影像确诊的脑震荡等脑损伤时的准确性。  相似文献   

8.
目的 构建并验证含动脉的骨盆-股骨-软组织复合体的三维有限元模型,研究骨盆动脉在侧向冲击条件下的力学响应。方法 基于1名女性志愿者的骨盆CT图像,建立骨盆及其动脉的三维有限元模型,包括骨、动脉、周围软组织以及骶髂关节、髋关节和耻骨联合等骨盆关节软骨和韧带。采用线弹性实体单元模拟骨骼,采用非线性的弹性连接单元模拟韧带,软组织包括软骨、包裹软组织和动脉等采用超弹性材料和实体单元仿真。以22.1 kg的冲击质量,3.13和5 m/s的冲击速度对坐位下的复合体进行侧面碰撞,记录模型的输出。结果 计算结果与文献报道的实验结果一致。3.31和5 m/s冲击速度下动脉的最大等效应力分别为98和216 kPa,最大拉伸应变为14.9%和20%,但不至于导致动脉断裂。结论 所建立的骨盆-股骨-软组织复合模型可用于冲击载荷下骨盆动脉的动态响应和损伤分析,为预测动脉损伤程度提供生物力学依据。  相似文献   

9.
为了验证汽车碰撞过程中人体颈部的损伤情况,建立了人体颈椎C4-C6部分有限元生物力学模型,模型组织包括皮质骨、松质骨、纤维环、髓核、韧带以及关节面,并在各组织接触部位设置了接触,以便更好地模拟模型在前冲击下的运动趋势。对模型施加前冲击载荷,研究各组织的应力及应变分布情况。经过验证,模型在前冲击过程中,其位移模拟数据基本在实验数据区间范围内,模拟了颈椎C4-C6部分在前冲击载荷下的运动趋势,具有较好的生物逼真度,基本反映了人体颈部冲击动力学响应。  相似文献   

10.
国人头颅三维有限元模型有效性检验   总被引:1,自引:0,他引:1  
目的检验国人头颅三维有限元模型有效性。方法依据Nahum头颅冲击尸体实验参数,对有限元模型加载额部冲击载荷,载荷位于正中矢状面上,由前向后,呈正弦波形,峰值6.8kN,时程15ms。计算分析头颅结构的力学响应。分析不同部位结构的应力改变。由应力值计算颅内压,对模拟计算结果与尸体实验测定结果进行比较。结果头颅不同结构的应力改变不同,由额、顶及枕部硬膜节点主应力计算出的颅内压时间曲线与尸体实验测定的颅内压曲线吻合。结论由硬脑膜节点应力计算所得的颅内压与尸体实验测定值吻合。该头颅三维有限元模型可用于头颅冲击的模拟计算,模型有效。  相似文献   

11.
应用有限元法 (finiteelementmethod)和试验设计技术 (design of experimentDOE)研究人头部颅骨(skull)、脑脊液 (cerebral spinal fluidCSF)和脑髓 (brain)材料性能的敏感性对颅内因撞击而产生的压力响应。该研究采用头部的有限元模型 ,用三因子、三层次的因子试验设计对影响颅内因撞击而引起的压力的颅骨、脑脊液和脑髓的材料性质的敏感性进行分析。研究结果进一步证实了颅骨、脑脊液、脑髓的材料性能对颅内因撞击而引起的压力的重要影响。本研究为进一步的头部的有限元分析提供了新的见解 ,并提出了对头部组织的材料性能作更进一步的探索。  相似文献   

12.
为预测和评判行人面部碰撞对创伤性脑损伤机理及生物力学响应,结合计算机断层扫描(CT)和磁共振(MRI)医学成像技术,建立符合中国人体特征的50百分位头颈部几何模型和有限元模型。有限元模型中颅骨与脑之间的相对运动采用切向滑动边界条件,摩擦系数定义为0.2,模拟鼻骨斜碰撞、鼻外侧软骨正面碰撞、牙齿正面碰撞、下颌骨碰撞和颧骨外侧斜碰撞等5种典型面部碰撞交通事故场景,探讨应力波在颅骨和脑内传播路径,得到颅内压力、von Mises等效应力和剪切应力等生物力学响应参数分布规律。结果显示,鼻骨斜碰撞颅内压力峰值为236.7 kPa,von Mises应力为25.97 kPa,超过了大脑耐受阈值;颧骨外侧斜碰撞最大横向剪切应力分别为14.56 kPa和-18.07 kPa,促使脑组织产生了较大的剪切变形,存在严重脑损伤风险。结论表明:面部碰撞的位置和方向是导致面部骨折严重程度的关键因素,面骨骨折的位置决定创伤性脑损伤的部位,面骨骨折都带有一定程度的创伤性脑损伤;头部受到冲击时,面部结构能够吸收大量的冲击能量来保护大脑,降低颅脑损伤的风险。  相似文献   

13.
Head responses subjected to impact loading are studied using the finite element method. The dynamic responses of the stress, strain, strain energy density and the intracranial pressure govern the intracranial tissues and skull material failures, and therefore, the traumatic injuries. The objectivity and consistency of the prevailing head traumatic injury criteria, i.e., the energy absorption, the gravity centre acceleration and the head injury criterion (HIC), are examined with regard to the head dynamic responses. In particular, the structural intensity (STI) (the vector representation of energy flow rate) is calculated and discussed. From the simulations, the STI, instead of the gravity centre acceleration, the HIC and the energy absorption criteria, is found to be consistent with the dynamic response quantities. The different local skull curvatures at impact have a marginal effect whereas the locations of the impact loadings have significant effects on the dynamics responses or the head injury. The STI also shows the failure patterns.  相似文献   

14.
研究颅脑交通伤的有限元模型的建立及验证   总被引:2,自引:0,他引:2  
建立基于人体解剖学结构的HBM(Human body model)头部三维有限元模型.详细描述了人体头部的主要解剖学结构,模型由头皮、颅骨、硬脑膜、脑脊液、软脑膜、大脑、小脑、脑室、脑干、脑镰和脑幕等组成.采用人体头部碰撞实验数据,比较了实验与仿真中头部的动力学响应和颅内压力分布参数,对头部有限元模型进行了验证.结果表明,该模型具有较好的生物逼真度,可以用来分析研究车辆交通事故中颅脑创伤和损伤机理.  相似文献   

15.
The current study aims to investigate the effectiveness of two different designs of helmet interior cushion, (Helmet 1: strap-netting; Helmet 2: Oregon Aero foam-padding), and the effect of the impact directions on the helmeted head during ballistic impact. Series of ballistic impact simulations (frontal, lateral, rear, and top) of a full-metal-jacketed bullet were performed on a validated finite element head model equipped with the two helmets, to assess the severity of head injuries sustained in ballistic impacts using both head kinematics and biomechanical metrics. Benchmarking with experimental ventricular and intracranial pressures showed that there is good agreement between the simulations and experiments. In terms of extracranial injuries, top impact had the highest skull stress, still without fracturing the skull. In regard to intracranial injuries, both the lateral and rear impacts generally gave the highest principal strains as well as highest shear strains, which exceed the injury thresholds. Off-cushion impacts were found to be at higher risk of intracranial injuries. The study also showed that the Oregon Aero foam pads helped to reduce impact forces. It also suggested that more padding inserts of smaller size may offer better protection. This provides some insights on future’s helmet design against ballistic threats.  相似文献   

16.
Finite element analysis of brain contusion: An indirect impact study   总被引:3,自引:0,他引:3  
The mechanism of brain contusion has been investigated using a series of three-dimensional (3D) finite element analyses. A head injury model was used to simulate forward and backward rotation around the upper cervical vertebra. Intracranial pressure and shear stress responses were calculated and compared. The results obtained with this model support the predictions of cavitation theory that a pressure gradient develops in the brain during indirect impact. Contrecoup pressure-time histories in the parasagittal plane demonstrated that an indirect impact induced a smaller intracranial pressure (−53.7 kPa for backward rotation, and −65.5 kPa for forward rotation) than that caused by a direct impact. In addition, negative pressures induced by indirect impact to the head were not high enough to form cavitation bubbles, which can damage the brain tissue. Simulations predicted that a decrease in skull deformation had a large effect in reducing the intracranial pressure. However, the areas of high shear stress concentration were consistent with those of clinical observations. The findings of this study suggest that shear strain theory appears to better account for the clinical findings in head injury when the head is subjected to an indirect impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号