首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 154 毫秒
1.
植入式微型轴流血泵工作时的高叶轮转速会增加血液损伤的风险。本文试图通过将轴流血泵设计成两级的方式来减小发生溶血和血栓的风险。本文对两级及单级轴流血泵在进口流量5L/min、出口压力100mm Hg的工况下进行数值模拟,并对比了溶血程度及血小板活化程度。研究结果显示,两级轴流血泵溶血程度优于单级设计,而血小板活化程度差于单级设计。在溶血程度和血小板活化程度的指标上,两级低-高扬程叶轮组合血泵设计优于两级等扬程和两级高-低扬程叶轮组合血泵设计。在降低植入式微型轴流血泵的血液损伤风险方面,本文的研究结果可为其提供一定的理论基础和新的设计思路。  相似文献   

2.
根据中国终末期心衰患者对左心辅助泵辅助人体血液循环的要求,设计以3 L/min流量、100 mm Hg压升为设计点,流量范围为2~7 L/min的微型可植入轴流血泵。该血泵采用纺锤形的转子叶轮结构以及带分流叶片、悬臂叶片的尾导结构,以使血泵在较宽的压力流量范围内具有良好的溶血和抗血栓特性。本文用数值模拟及粒子成像测速(PIV)的方法分析血泵的水力学特性、流场及溶血特性。结果表明:血泵转速为7 000~11 000 r/min时,在2~7 L/min的流量范围内可提供60.0~151.3 mm Hg的压升;分流叶片抑制了尾导的尾缘吸力面处的流动分离;悬臂式叶片结构将转子叶片的叶尖间隙变为尾导叶片的叶根间隙,间隙的切线速度由6.2 m/s降至4.3~1.1 m/s;血泵的最大标量剪切应力值为897.3 Pa,平均剪切应力值为37.7 Pa;采用Heuser溶血模型得到的溶血指数为0.168%;PIV试验所得泵内尾导区域的流场速度分布与数值计算得到的流场特征吻合良好。本研究所设计的轴流血泵的尾导具有分流叶片和悬臂叶片,流道内血流无较大分离流动,降低了剪切力对血液的破坏,溶血性能良好,压力流量性能满足临床需要。  相似文献   

3.
微型轴流血泵溶血的数值模拟   总被引:2,自引:1,他引:1  
基于N-S方程和标准K-ε湍流模型,采用非结构网格技术,对微型轴流血泵内部三维流场进行了数值模拟,得到了速度场、压力场等流场细节;同时采用Lagrange粒子追踪法获得了沿不同流线的剪应力以及红细胞暴露接触时间的分布,并引入溶血计算的经验公式,计算对比了不同转速条件下血泵的溶血指标,重点分析了血泵在5L/min、8000r/min工况下的溶血性能,对于血泵溶血的估算,本方法是可行的.  相似文献   

4.
自制轴流血泵溶血实验   总被引:1,自引:0,他引:1  
在XZ-Ⅱ型轴流血泵基础上,通过计算机流体辅助设计,改进研制出XZ-ⅡA型轴流血泵,之前对其结构、材料、产热和动力学输出性能等做过论述[1],但是其体外溶血性能以及在体适应性都没有检测。这里通过体外模拟循环实验,初步检测XZ-ⅡA型轴流血泵体外溶血性能,通过动物在体实验衡量其在体适应性。试验测得XZ-ⅡA型轴流血泵体外实验NIH值为(0.0473±0.0165)mg/dL。四例实验动物16h在体辅助无机械故障,血泵辅助后实验动物血液FHb开始上升,平均最高达到(32.06±4.64)mg/dL。XZ-ⅡA型轴流血泵实验结果与国外同类型血泵比较不是很理想,应用于临床前仍需做大量改进。  相似文献   

5.
目的对研制开发的一种新型的磁力外驱动轴流式心室辅助血泵的血液相容性能进行测试。方法利用特制血袋作为模拟循环管道,羊血作为循环介质,采用标准溶血指数衡量体外溶血实验性能。通过3只山羊12h在体实验衡量其在体适应性。结果实验测得轴流血泵体外实验标准溶血指数(NIH)为(0.158±0.043)mg/L。3例实验动物12h在体辅助无机械故障,血泵辅助后实验动物血液中游离血红蛋白(FHb)开始上升,最高达到164.8mg/L。结论磁力外驱动轴流血泵实验结果比较理想,值得进一步改进。  相似文献   

6.
基于激光三维扫描技术的微型轴流血泵叶轮加工精度检测   总被引:1,自引:0,他引:1  
目的检测微型轴流血泵的转子叶轮加工精度,建立叶轮形状复杂的微型血泵叶轮加工精度检测方法。方法本文采用激光三维扫描技术获得FW-2型轴流血泵叶轮的点云,利用逆向工程软件Geomagic Studio对点云进行处理后建立三维模型。将建立的叶轮模型与设计的叶轮模型导人Geomagic Qualify软件进行对比,即可分析具有复杂曲面的FW-2型轴流血泵转子叶轮各个型面的加工精度。结果对比激光扫描得到的叶轮模型与设计的叶轮模型,结果显示FW-2型轴流血泵转子叶轮整体加工精度符合要求,只有极小区域加工精度较低。结论激光三维扫描结合逆向三维建模技术是微型血泵复杂叶轮的加工精度检测的有效方法。本研究为微型血泵叶轮检测提供了一种新思路, 对确定血泵使用过程中的血栓形成原因,改进血泵设计具有重要意义。  相似文献   

7.
现有的外磁驱动植入式轴流血泵,由于植入环境、受驱动力不均匀等因素会产生振动。本文通过对单个红细胞进行建模,仿真分析单个红细胞在边界振动流场中的变形与受力,并与红细胞在血泵中遭受机械损伤的机制相结合,研究边界振动流场对红细胞损伤的影响。研究结果表明,在边界振动流场中红细胞的形状变化情况、受力状况和周围速度场等因素均会导致红细胞损伤。通过对上述内容的研究,本文期待可为改善血泵的溶血现象提供理论依据。  相似文献   

8.
溶血的定量评价对于血泵的设计和研究十分重要,而建立血泵溶血的数学模型,对于血泵溶血的预测,提高其血液相容性具有十分重要作用.本文在分析与血泵溶血相关因素的基础上,首先从能量守恒定律确定轴流式血泵叶轮驱动力的输出功可分两部分提供给血液:用于提高血液压力的能量以及用作血液溶血的能量.然后采用动力系统转矩方程和能量方程,建立血泵辅助循环溶血模型.最终建立了能够定量评价血泵在不同工作状态下(正常状态和抽吸状态)溶血程度的数学公式.本文对轴流式血泵的溶血问题提供了新的研究思路,将对血泵及其控制系统的改进提供重要的依据.  相似文献   

9.
螺旋血泵的研制及其实验研究   总被引:11,自引:4,他引:11  
血液相容性问题是影响心室辅助装置使用寿命及大量临床应用的重要因素之一。减少红细胞破坏和减少血液接触面积是目前可以提高血泵血液相容性的重要手段,为此我们1997年到1999年间研制了叶片为螺旋型且与血液接触面积小的螺旋血泵。血泵由泵体、螺旋叶轮、电机、医用硅橡胶密封圈和轴承等构成。叶轮的最大直径为21.8mm,最小直径是9.8mm,螺旋叶轮椎角41.8度,泵体最大直径30mm,血泵为钛合金材料,体积76ml,总重量220g。体外试验结果显示:1.螺旋血泵的输出是流量4L/min对应的平均压力为100mmHg。2.血泵的表面温度恒定在39℃左右,密封性能良好。3.螺旋血泵的溶血指数NIH为0.085g/100L低于轴流血泵的NIH值0.284g/100L,且未在螺旋叶轮周围未发现任何微小血栓,证实螺旋血泵对血液的破坏明显低于轴流血泵。4.由于密封引起的产热和耗能尚待于改进。  相似文献   

10.
血泵对血液的破坏程度是衡量血泵性能的一个重要指标。本文针对三种叶片式血泵即离心泵、轴流泵、混流泵的溶血试验做一比较分析。在试验中 ,选用了我们研制的Ⅰ型离心血泵、磁耦合型轴流血泵、螺旋混流泵。在一封闭管道中 ,注入新鲜抗凝羊血 5 0 0ml,水浴温度 37℃ ,血泵辅助流量为 5L min ,平均压力10 0mmHg,分别在泵转后 0、 0 5、 1 0、 1 5、… 4 0h测量血浆中游离血红蛋白 (FHB)和纤维蛋白原 (FIB)含量 ,最后计算出三个血泵整个过程中的标准溶血指数NIH。结果表明三种血泵对血液都有一定的破坏 ,它们的NIH值分别为 0 112 5± 0 0 15 7g 10 0L、 0 0 931± 0 0 137g 10 0L和 0 0 5 6 1± 0 0 0 5 8g 10 0L ,由此可得出混流泵对血液的破坏最小。  相似文献   

11.
刘晨    张惟斌    衡亚光    江启峰    申坤    崔清清   《中国医学物理学杂志》2023,(4):496-502
人工心脏(血泵)一直存在泵体对血细胞剪切力过大和流速过快容易引起溶血的问题。为了研究人体正常血压情况下,血泵内部剪切力和速度场的分布情况,选择圆盘泵叶轮代替传统离心泵叶轮,对两种模型进行数值计算,分析不同叶轮内部剪切力和速度场的分布规律。研究表明传统离心泵内部流速高,叶片表面剪切力大,对血细胞的伤害大。圆盘泵相比传统离心泵,剪切力更小,流场速度分布均匀,流速更小。和传统离心泵相比,不同转速下圆盘泵能降低溶血的发生率。圆盘泵叶片数为6片时,抗溶血性能更好。研究结果为血泵的优化提供理论依据。  相似文献   

12.
血泵是心脏辅助循环装置的核心部件之一,其运行过程中所产生的血栓和溶血超出安全范围将会引发多种并发症,严重者甚至危及病人生命,因此血栓和溶血问题是衡量血泵性能的重要指标也是血泵的重要研究课题。研究表明,溶血主要是由血泵内叶轮的机械运动及血液的复杂流动的高剪切力引起。因此溶血多出现在血液与固壁接触面上及复杂流动的流体问。本次研究的目的是要探索用数值模拟的方法分析离心血泵内部的流场及溶血情况,在研究中通过与上海某医院合作实验采集一种叶片式离心血泵运行过程中的实验数据,再对该叶片式离心血泵内部流场进行数值模拟,通过对比血泵实际运行情况与数值计算结果对其内部血栓和溶血问题进行系统的分析研究,最终数值模拟分析的情况与该血泵在实际运行中的血栓和溶血情况基本相符。通过本次研究探索用数值模拟的方法对血泵的血栓和溶血现象进行分析,特别是对溶血现象进行一定程度的定量分析,此分析结果及分析方法可为血泵优化及临床应用做方法指导之用。  相似文献   

13.
Experimental and computational studies were performed to elucidate the role of turbulent stresses in mechanical blood damage (hemolysis). A suspension of bovine red blood cells (RBC) was driven through a closed circulating loop by a centrifugal pump. A small capillary tube (inner diameter 1 mm and length 70 mm) was incorporated into the circulating loop via tapered connectors. The suspension of RBCs was diluted with saline to achieve an asymptotic apparent viscosity of 2.0 +/- 0.1 cP at 23 degrees C to produce turbulent flow at nominal flow rate and pressure. To study laminar flow at the identical wall shear stresses in the same capillary tube, the apparent viscosity of the RBC suspension was increased to 6.3 +/- 0.1 cP (at 23 degrees C) by addition of Dextran-40. Using various combinations of driving pressure and Dextran mediated adjustments in dynamic viscosity Reynolds numbers ranging from 300-5,000 were generated, and rates of hemolysis were measured. Pilot studies were performed to verify that the suspension media did not affect mechanical fragility of the RBCs. The results of these bench studies demonstrated that, at the same wall shear stress in a capillary tube, the level of hemolysis was significantly greater (p < 0.05) for turbulent flow as compared with laminar flow. This confirmed that turbulent stresses contribute strongly to blood mechanical trauma. Numerical predictions of hemolysis obtained by computational fluid dynamic modeling were in good agreement with these experimental data.  相似文献   

14.
提高溶血性能,降低溶血率作为血泵性能优化的一个重要指标,对血泵的结构优化具有重要的指导意义。本文基于一款离心式血泵通过使用计算流体力学(CFD)技术,采用非结构化网格、N-S方程和标准K-ε湍流模型在fluent中模拟分析出不同工况下血泵流场内部的剪切力场、压力场等重要参数并根据叶轮流场数据分析,提出了4种不同的结构优化方案;并基于三维快速溶血预估模型计算出不同流量、不同叶轮结构下血泵的溶血性能。仿真结果显示:当叶片与叶轮径向夹角为45°,流量达到5 L/min、转速为2 100 r/min时,扬程为115 mmHg,溶血率达到0.022 1 g/100 L,优化后模型较原模型溶血率提升40.9%,满足人体泵血生理需求。实验结果显示:选用优化后结构进行实验分析,得到扬程的实验数据与仿真数据相互验证,进一步证实了该仿真结果的准确性。  相似文献   

15.
Thrombus formation and hemolysis are critical issues in the design of a long-term implantable LVAS (left ventricular assist system). The fluid dynamic characteristics of the blood flow are one of the main factors that cause thrombus formation and hemolysis. In this study, we optimized blood chamber geometry, port design, and fluid dynamics in our implantable LVAS to ensure minimization of shear-stress-related blood damage. A blood pump chamber (stroke volume, 65 ml) and an inflow and outflow port were designed with three-dimensional CAD (computer-aided-design) software (Pro-Engineering version 20) and estimated by FEM (fine-element method) computational fluid dynamic (CFD) analysis (Ansys version 5.5). We adopted three-dimensional distribution of CFD results for qualitative evaluation, and we also tried to estimate the normalized index of hemolysis (NIH) and time-series change of hematocrit from the results of CFD analysis as quantitative index of optimization for geometry of the blood pump chamber. With the use of this design, the blood pump geometry was optimized as the decrease of NIH from 2.72 g/1001 in the first model to 0.098 g/1001 in the second model, corresponding to the decrease in shear stress. The hematocrit also improved from 0.7% in the first model to 11.5% in the second model 2 years after implantation of the pump. Areas where flow stagnation was observed in the first model were free of stagnation in the second model. The results show that computer-aided design of the blood pump contributes to optimizing a blood pump chamber for reducing thrombus formation and hemolysis, and also contributes to reducing cost and time in developing the implantable LVAS.  相似文献   

16.
目的应用计算流体动力学方法(computational fluid dynamics,CFD)对离心式双向液力悬浮人工心脏血泵流场进行仿真分析,通过改进叶轮入口结构来改善血液在血泵的流动状态,从而提升其抗溶血性能。方法从影响血泵溶血性能的角度考虑,基于N-S方程和k-ε标准双方程湍流模型,应用软件FLUENT6.3对离心式人工心脏血泵流场进行数值模拟,分析在设计工况下,叶轮入口处的结构变化对泵内流场的影响,以及流场中最大速度与溶血水平之间的关系,并根据流场分析结果对血泵叶轮入口进行优化。结果经过优化,血泵内流场紊乱现象得到改善,影响溶血值的切应力和曝光时间均有所降低,溶血性能得到改善。同时,对于离心式双向液力悬浮血泵,在设计工况下,其流场中最大速度有作为流场优化过程中的直观指标参数的潜力。结论该研究的仿真分析可为离心式双向液力悬浮人工心脏的设计积累一定经验。  相似文献   

17.
血泵的溶血程度主要受血液的运动流场影响,所以研究血液在血泵内腔的螺旋流动特性对于螺旋叶片血泵的设计和研究工作具有十分重要的意义。本文将血液流变理论和传统的力学分析方法相结合,对血液在低、高剪切变率两种条件下的环形空间螺旋流动性能进行了研究,给出了速度表达式,分析了各参数对流动性能的影响,同时还对高速螺旋流场中红细胞的力学行为进行了分析。结果表明,高速螺旋流场中的血液流动情况十分复杂,在进行高速螺旋血泵设计时,应综合考虑血液在不同剪切变率条件下的流动性能及红细胞的力学行为。  相似文献   

18.
Empirical studies were conducted on how rates of hemolysis were influenced by mechanical factors, such as shear, turbulence, agitation, pressure fluctuation, and bubbling, in five types of experimental apparatus: rotating cylinder, rotating disks, agitated vessel, pressure pulsator, and bubble columns. Our data indicate, at least qualitatively, that an important mechanical factor controlling rates of hemolysis in practical devices, in which blood does not flow in thin channels or capillaries, is the turbulent stress in the bulk blood, rather than the shear at the blood-solid interface.  相似文献   

19.
The third prototype of a continuous flow ventricular assist device (CF3) is being developed and tested for implantation in humans. The blood in the pump flows through a fully shrouded four bladed impeller (supported by magnetic bearings) and through small clearance regions on either side of the impeller. Computational fluid dynamics (CFD) solutions for this flow have been obtained by using TascFlow, a software package available from AEA Technology, UK. These flow solutions have been used to estimate the shear stresses on the blood in the pump and, hence, to minimize hemolysis. In addition, the solutions are informative for achieving a design that will provide good washing of the blood to minimize the possibility of stagnation points that can lead to thrombosis. This study presents numerical studies of these phenomena in the CF3. The calculated shear rate results are compared with values published in the open literature. The comparisons indicate that hemolysis will not be a problem with CF3, which is in agreement with preliminary experimental measurements. Flow studies are being conducted to determine the optimal size of the clearance regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号