首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The incidence of delayed wound healing in patients with diabetes has increased in recent years. However, the reason of delayed diabetic wound healing and the changes of human adipose stem cells (hASCs) in the diabetic environment are still unclear. We simulated diabetic microenvironment with high glucose and glycation end products (AGEs) in vitro. CCK-8 and flow cytometry were used to study the proliferation and apoptosis of hASCs in the simulated diabetic microenvironment. The paracrine of hASCs was studied by transwell co-culture system. Protein chip was used to measure the expression of cytokines in hASCs. We found that high glucose and AGEs did not affect the proliferation of hASCs but arrested them in the S phase. More hASCs appeared early apoptosis in the simulated diabetic microenvironment. The promoting effect on the proliferation of fibroblasts and endothelial cells was weakened when hASCs were cultured in diabetic microenvironment for 6 days. The five cell factors, granulocyte colony-stimulating factor (G-CSF), transforming growth factor-α (TGF-α), hepatocyte growth factor (HGF), tissue inhibitor of metalloproteinases-1 (TIMP-1), and vascular endothelial growth factor (VEGF), were all downregulated in hASCs of AGEs and the high glucose group. In this study, we simulated diabetic microenvironment with high glucose and AGEs in vitro to evaluate the changes of proliferation, apoptosis, paracrine, and cytokine expression of hASCs in the diabetic environment and tried to find the possible reason of delayed diabetic wound healing.  相似文献   

2.
We have previously shown that advanced glycation end products (AGEs)-their receptor (RAGE) interaction elicits angiogenesis through autocrine production of vascular endothelial growth factor (VEGF), thus suggesting the active involvement of the AGEs-RAGE system in proliferative diabetic retinopathy (PDR). Since the crosstalk between the AGEs-RAGE and the renin-angiotensin system has also been proposed in the pathogenesis of PDR, we investigated here whether olmesartan, an angiotensin II type 1 receptor blocker, inhibited the AGEs-elicited angiogenesis in vitro by suppressing the NF-kappaB-mediated RAGE expression. Olmesartan significantly inhibited the AGEs-induced NF-kappaB promoter activity and RAGE gene expression in cultured microvascular endothelial cells (ECs). Further, olmesartan was found to block the AGEs-induced up-regulation of VEGF mRNA levels and consequent increase in DNA synthesis in ECs. These results demonstrated for the first time that olmesartan inhibited the AGEs signaling to angiogenesis by suppressing RAGE expression in ECs. Our present study suggests that blockade of the renin-angiotensin system by olmesartan may play a protective role against PDR by attenuating the deleterious effects of AGEs via down-regulation of RAGE.  相似文献   

3.
AimsTo construct a simple and feasible rat model to mimic diabetic vasculopathy by chronic injection of advanced glycation end products (AGEs) and further determine the role of profilin-1 in vasculopathy in AGE-injection rats.MethodsSprague-Dawley rats were injected with AGEs-BSA (25 mg/kg/day) for 0, 20, 30, 40, and 60 days by caudal vein. Then, the morphological changes in the aorta, heart, and kidney and the expression of profilin-1 were assessed. In cultured endothelial cells, shRNA profilin-1 was used to clarify the role of profilin-1 in AGEs-induced vascular endothelial lesions and inflammatory reactions.ResultsThe aorta, heart, and kidney of the AGE-injection rats had obvious morphological changes. Also, the indicators of vascular remodeling in the aorta significantly increased, accompanied by the increased expression of profilin-1 in the aorta, heart, and kidney and polysaccharide content on the kidney basement membrane. In addition, the protein level of profilin-1 was markedly upregulated in the aorta of AGEs-injected rats and endothelial cells incubated with AGEs. shRNA profilin-1 markedly attenuated the upregulated expression of profilin-1, receptor for AGEs (RAGE), and NF-κB in endothelial cells incubated with AGEs, as well as reduced the high levels of ICAM-1, IL-8, TNF-α, ROS, and apoptosis induced by AGEs.ConclusionsExogenous AGEs can mimic diabetic vasculopathy in vivo to some extent and increase profilin-1 expression in the target organs of diabetic complications. Blockade of profilin-1 attenuates vascular lesions and inflammatory reactions, suggesting its critical role in the metabolic memory mediated by AGEs.  相似文献   

4.
Accumulating evidence points to a causal role for advanced glycation end products (AGEs) in the development of diabetic vascular complications, including retinopathy. Possible pathogenic mechanisms linking AGEs to diabetic retinopathy include protein kinase C (PKC) activation, oxidative stress, and vascular endothelial growth factor (VEGF) expression. In the present study, we investigated the effect of AGEs on VEGF expression in bovine retinal endothelial cells (BRECs) and determined the role of PKC and oxidative stress in this effect. Incubation of BRECs with AGEs led to enhanced VEGF mRNA and protein expression. This treatment also induced PKC translocation in these cells. The AGE-induced increases in VEGF expression and PKC activation were inhibited by the pan-specific PKC inhibitor, calphostin C, and by the antioxidant drug and compounds, gliclazide, N-acetylcysteine, and vitamin E. In contrast, glyburide which does not exhibit antioxidant properties, did not affect the AGE-induced VEGF expression. Exposure of BRECs to AGEs resulted in a significant increase of nuclear protein binding to the NF-kappa B consensus sequence of the VEGF promoter region. Induction of DNA binding activity for NF-kappa B by AGEs was prevented by gliclazide. Treatment of BRECs with AGEs also increased the proliferation of these cells. This effect was abrogated by incubating the cells with an anti-VEGF antibody and was inhibited in the presence of gliclazide. Overall, these data demonstrate that AGEs increase VEGF expression in retinal endothelial cells through generation of oxidative stress and downstream activation of the PKC pathway. Targeting VEGF expression with specific pharmacological agents, such as antioxidants and PKC inhibitors, may prove efficacious for the treatment of diabetic retinopathy.  相似文献   

5.
目的观察羟甲基戊二酰辅酶A还原酶抑制荆辛伐他汀对糖基化终产物(AGEs)诱导心肌微血管内皮细胞(CMECs)表达单核细胞趋化因子1(MCP-1)、细胞间黏附分子1(ICAM-1)的抑制作用,探讨辛伐他汀在早期糖尿病心肌微血管炎性病变中的保护机制。方法将培养的CMECs用辛伐他汀预孵育6 h,加入400mg/L的外源性糖基化牛血清白蛋白共培养72 h,分为AGEs组和BSA对照组,分别采用ELISA法测定McP-1的表达;流式细胞仪测定ICAM-1的表达;RT-PCR法测定糖基化终产物特异性受体mRNA的表达;Western blot法检测内皮细胞表面特异性受体(RAGE)蛋白表达。结果与BSA对照组比较,AGEs组MCP-1、ICAM-1、RAGE mRNA及其蛋白表达明显增强,差异有统计学意义(P<0.05)。辛伐他汀预孵则显著抑制AGEs诱导的MCP-1、ICAM-1的表达,并在mRNA及蛋白水平下调RAGE蛋白的表达。结论辛伐他汀可能通过抑制AGEs-RAGE信号途径来发挥对糖尿病心肌微血管病变的保护作用。  相似文献   

6.
7.
Epidemiological studies have shown that high glucose levels and oxidative stress cause elevation of advanced glycation end products (AGEs) that are known to contribute to diabetic complications. Thus, agents that hamper reactive oxygen species (ROS) load can be used as a potential drug against AGEs-mediated complications. Hence, the present study investigated the protective role of gallic acid (GA) against the effects of AGEs in cardiac H9C2(2-1) cells. Exposure of cells to AGEs resulted in release of ROS (P?<?0.05) with significant (P?<?0.05) decline in antioxidant enzyme levels and increase in collagen (P?<?0.01) content. In addition, the altered mitochondrial membrane potential (mmp) (P?<?0.01) was also observed in cells exposed to AGEs, whereas AGEs-exposed cells pretreated with GA prevented the release of ROS, and there were no significant changes in the antioxidant status, collagen content and mmp. Thus, the results of the present study provide evidence that GA exhibits protective role against AGEs-induced cardiovascular complications probably through its free radical scavenging activity.  相似文献   

8.
目的 观察色素上皮衍生因子(PEDF)、晚期糖基化终产物受体(RAGE)的表达及重组PEDF对RAGE表达的抑制作用,探讨PEDF与DN的关系及对DN的保护作用. 方法 采用糖化小牛血清白蛋白(AGE-BSA)体外诱导人肾小球系膜细胞(HRMCs),Western blot及RT-PCR法分别检测RAGE、PEDF蛋白和mRNA表达. 结果 (1) AGE-BSA(100~400 mg/L)呈浓度梯度减少HRMCsPEDF表达(P<0.01),升高RAGE表达(P<0.01);(2)重组PEDF蛋白(5~40 nmol/L)呈浓度依赖性抑制AGE-BSA介导RAGE蛋白在HRMCs的表达(P<0.05). 结论 AGEs通过降低PEDF表达,增加RAGE表达参与DN的发生,PEDF可能通过抑制AGE-RAGE轴对DN发挥保护作用.  相似文献   

9.
Background: Apoptosis via the Fas/Fas ligand signalling system plays an important role in the development of various liver diseases. The administration of an agonistic anti‐Fas antibody to mice causes massive hepatic apoptosis and fulminant hepatic failure. Several growth factors including hepatocyte growth factor (HGF) have been found to prevent apoptosis. Methods: In this study, we demonstrated the overexpression of HGF to have a protective effect on Fas‐mediated hepatic apoptosis using a transgenic mice (Tg mice) model. Results: In HGF Tg mice, the elevation of alanine aminotransferase was dramatically inhibited at 12 and 24 h after the administration of 0.15 mg/kg anti‐Fas antibody. HGF Tg mice showed a significantly lower number of apoptotic hepatocytes at 12 h compared with wild‐type (WT) mice. Furthermore, 85% (six of seven) HGF Tg mice were able to survive after the administration of 0.3 mg/kg anti‐Fas antibody, while none of the WT mice survived. The Bcl‐xL expression was increased in HGF Tg mice, while there was no difference in the expression of Bax, Bid, Mcl‐1 and bcl‐2 between WT mice and HGF Tg mice. In addition, the HGF Tg mice showed more Akt phosphorylation than the WT mice both before and after the anti‐Fas antibody injection. Conclusions: Taken together, our findings suggest that HGF protects against Fas‐mediated liver apoptosis in vivo, and the upregulation of Bcl‐xL via Akt activation may also play a role in the protective effects of HGF.  相似文献   

10.
We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.  相似文献   

11.
Advanced glycation endproducts (AGEs) have been implicated in the pathogenesis of diabetic kidney disease. The actions of AGEs are mediated both through a non-receptor mediated pathway and through specific receptors for AGEs (e.g. RAGE). To explore a potentially specific role for RAGE in renal changes in type 1 diabetes, we examined the renal effects of a neutralising murine RAGE-antibody (ab) in streptozotocin (STZ)-diabetic mice, a model of type 1 diabetes. One group of STZ-diabetic mice was treated for two months with the RAGE-ab, while another STZ-diabetic group was treated for the same period with an irrelevant immunoglobulin G (IgG). Two groups of non-diabetic NMRI mice were treated with either RAGE-ab or isotype-matched IgG for two months. Placebo-treated STZ-diabetic mice showed an increase in kidney weight, glomerular volume, basement membrane thickness (BMT), urinary albumin excretion (UAE) and creatinine clearance (CrCl), when compared with non-diabetic controls. In RAGE-ab-treated STZ-diabetic mice, the increase in kidney weight and UAE was reduced, while the increase in CrCl was abolished. RAGE-ab administration in NMRI mice caused a reduction in liver weight and an increase in BMT. Renal messenger RNA (mRNA) for connective tissue growth factor and collagen IValpha1 was increased in placebo-treated diabetic animals. RAGE-ab treatment had no impact on the expression of these factors. The renal effects of RAGE-ab administration in STZ-diabetic mice were seen without impact on body weight, blood glucose or food consumption. In conclusion, the present data support the hypothesis that RAGE is an important pathogenic factor in the renal changes in an animal model of type 1 diabetes.  相似文献   

12.
Recent progress in our understanding of advanced glycosylation reactions in vivo has affirmed the hypothesis that these products play an important role in the evolution of both diabetic and nondiabetic vascular disease. Utilizing newly developed advanced glycosylation end-products (AGE)-specific enzyme-linked immunosorbent assay (ELISA) techniques, AGEs have been identified to be present on a variety of vascular wall, lipoprotein, and lipid constituents. Vascular wall AGEs contribute to vascular pathology by increasing vascular permeability, enhancing subintimal protein and lipoprotein deposition, and inactivating nitric oxide. Lipid-linked AGEs present in low-density lipoprotein (LDL) also have been shown to initiate oxidative modification, promoting oxidation reactions that may proceed without the involvement of free metals or other radical generating systems. AGE-specific ELISA analysis has demonstrated a significantly increased level of AGE-modified LDL in the plasma of diabetic patients when compared to normal controls. AGE-modification impairs LDL-receptor-mediated clearance mechanisms in vivo and may contribute to elevated LDL levels in patients with diabetes. This concept has been substantiated further by the recent clinical observations that administration of the advanced glycosylation inhibitor aminoguanidine to diabetic patients significantly decreases circulating LDL levels. (Trends Cardiovasc Med 1997;7:39-47). ? 1997, Elsevier Science Inc.  相似文献   

13.
14.
AIMS: Hyperglycemia is linked to vascular dysfunction in patients with diabetes mellitus, either directly or through advanced glycation end product (AGE) formation. Experimental evidence has indicated the possible involvement of AGEs in the genesis of vascular complications. We investigated whether serum levels of AGEs and of the glycoxidation compound carboxymethyl-lysine (CML) were increased and correlated with vascular complications in type II diabetes mellitus. METHODS: Serum levels of AGEs and CML-human serum protein (CML-HSP) were measured by a specific immunoassay in 51 men and 26 women aged 58 +/- 6.1 years (mean +/- SD) who had been treated for type II diabetes mellitus for 11 +/- 8 years, and in a non-diabetic control group consisting of 39 men and 21 women aged 55.5 +/- 7.5 years. Patients with macroalbuminuria or abnormal creatinine clearance were excluded from the study. RESULTS: The serum levels of AGEs were significantly increased in patients with type II diabetes compared to controls (P<0.001). Blood levels of CML-HSP were significantly increased in diabetic patients compared to normal subjects [35.3 +/- 27.4 and 9.3 +/- 7.2 (mean +/- SD) pmol/mg of protein, respectively; P<0.0001]. In diabetic patients with retinopathy or microalbuminuria (urinary albumin excretion: UAE > 30 mg/24 h), CML-HSP levels were significantly higher (P<0.02), and even more elevated in patients with both complications. CONCLUSION: In patients with type II diabetes, CML-HSP levels that are at variance with the HbA(1c) index for blood glucose may be a biomarker of glycoxidation, and related to the development of microvascular complications.  相似文献   

15.
Formation of advanced glycation end products (AGEs) is an important mechanism by which chronic exposure to high glucose levels leads to vascular complications. Measurement of AGEs is hence of great importance for clinicians and researchers concerned with the management and prevention of diabetic vascular disease. The aim of this study was to evaluate a simple methodology to detect AGEs in the serum and to correlate their levels with diabetes and microangiopathy, specifically retinopathy and nephropathy. We studied 157 subjects, which included nondiabetic control subjects (n = 38), type 2 diabetic patients without microangiopathy (n = 65), and type 2 diabetic subjects with retinopathy (n = 29) or both retinopathy and nephropathy (n = 25). All subjects were assessed for their glycemic and lipid status. Serum AGEs were monitored by recording the Maillard-specific fluorescence that resulted from sequential addition of serum into the buffer. The resultant linear regression was modeled to yield the slope values that were termed advanced glycation index (AGI) in arbitrary units. The serum levels of AGI (mean +/- SD) were higher in diabetic subjects without complications (6.0 +/- 1.6 units) compared with nondiabetic subjects (4.6 +/- 1.0 units), still higher among diabetic subjects with retinopathy (7.6 +/- 1.2 units) and highest in diabetic subjects with both retinopathy and nephropathy (8.3 +/- 2.0 units). Among diabetic subjects, AGI had a significant positive correlation with duration of diabetes (r = 0.25, P = .006), glycated hemoglobin (r = 0.27, P = .004), cholesterol (r = 0.24, P = .009), triglycerides (r = 0.23, P = .014), and serum creatinine (r = 0.30, P = .001), and a significant negative correlation with creatinine clearance (r = -0.27, P = .003). Logistic regression analysis using diabetic microangiopathy as the dependent variable showed an association with AGI even after including age, duration of diabetes, and glycated hemoglobin (P < .001) into the model. Advanced glycation index is a simple method to detect AGEs, and it correlates well with diabetes, particularly with microangiopathy.  相似文献   

16.
目的观察吡格列酮对糖基化终产物(AGEs)刺激下大鼠血管平滑肌细胞(VSMCs)增殖的作用及对过氧化物酶体增殖物激活受体γ(PPARγ)基因及蛋白表达水平的影响,探讨PPARγ在AGEs诱导VSMCs增殖中的作用。方法(1)MTY法观察不同浓度、不同时间的AGEs对VSMCs增殖的影响及吡格列酮(1.0、10、100μmol/L)与AGEs共孵育对VSMCs增殖的干预作用。(2)用半定量逆转录聚合酶链反应测定VSMCs中PPARγ mRNA的表达。(3)用Western blot法检测PPARγ的蛋白表达。结果AGEs作用导致VSMCs增殖,AGEs抑制PPARγ mRNA和蛋白表达水平,这种抑制作用随着AGEs干预的时间延长和浓度的增加而增强(P〈0.05)。PPARγ激活剂吡格列酮通过增加PPARγ的表达,抑制AGEs诱导的VSMCs增殖。结论PPARγ表达的下降可能是糖尿病易患动脉粥样硬化的重要原因之一。  相似文献   

17.
It has been reported that advanced glycosylation end products (AGEs) play an important role in the development of diabetic complications. To evaluate the relationship between serum AGEs and diabetic nephropathy, we measured serum AGE levels in diabetic patients with normoalbuminuria (N), microalbuminuria (M), overt proteinuria (O), and hemodialysis (HD), non diabetic patients with nephropathy, and age-matched control subjects using the enzyme-linked immunosorbent assay (ELISA). Urine AGE levels were also measured in these subjects except group HD. Serum AGE levels in diabetic patients were not significantly higher than those in the normal subjects. When we compared serum AGE levels among various stages of diabetic nephropathy, groups O and HD had significantly higher serum AGE levels than the other groups. Serum AGE levels in group HD were almost 6-fold higher than those in groups N and M. In contrast, there were no significant differences in urinary AGE levels among any diabetic groups. As for the variables that determine serum AGE levels in diabetic patients, there was no significant correlation between serum AGEs and fasting blood glucose, hemoglobin A1c (HbA1c), or duration of diabetes. In contrast, serum AGEs showed a strong correlation with serum creatinine and an inverse correlation with creatinine clearance. To evaluate the relationship between serum AGEs and oxidative stress in diabetic nephropathy, urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and serum malondialdehyde (MDA), which are biological markers of total oxidative stress in vivo, were also examined. Both urinary 8-OHdG and serum MDA levels were significantly higher in diabetic patients with proteinuria versus those without proteinuria. However, there was no significant correlation between serum AGEs and urinary 8-OHdG or serum MDA levels in diabetic patients. These results suggest that the accumulation of serum AGEs in diabetic nephropathy may be mainly due to decreased removal in the kidney rather than increased production by high glucose levels or oxidative stress.  相似文献   

18.
The aim of the present study was to evaluate the vitreous levels of hepatocyte growth factor (HGF) in patients with proliferative diabetic retinopathy (PDR) and to investigate its relationship with vascular endothelial growth factor (VEGF) and retinopathy activity. In addition, the relationship between intravitreous HGF levels and the presence of epiretinal membranes (ERM), as well as the expression of c-Met in ERM were also investigated. In this case-control study, serum and vitreous samples as well as ERM specimens were obtained during vitrectomy from 28 diabetic patients with PDR and 30 non-diabetic control subjects. HGF and VEGF were determined by ELISA and c-Met expression by immunohistochemistry. Vitreal levels of both VEGF and HGF were higher in patients with PDR in comparison with the control group (p<0.0001). However, after correcting for total vitreous protein concentration, HGF (ng/mg of proteins) was lower in diabetic patients than in non-diabetic control subjects (p=0.02). No correlation was detected between the vitreal levels of HGF and VEGF. In addition, intravitreous VEGF but not HGF was found to be related to PDR activity. Both diabetic patients and non-diabetic patients in whom ERM had been excised presented higher HGF intravitreous levels. Finally, a significant expression of c-Met in ERM membranes were observed in both diabetic patients with PDR and in non-diabetic subjects. In conclusion, both HGF and VEGF increased, but were not related, in the vitreous fluid of diabetic patients with PDR. Our findings suggest that HGF is related to pathological conditions in which fibroproliferative processes or wound healing are involved rather than with angiogenesis itself.  相似文献   

19.
目的研究α-硫辛(ALA)对晚期糖基化终末产物(AGEs)诱导血管内皮细胞凋亡的抑制作用及机制。方法体外培养人脐静脉内皮细胞,加不同培养液孵育60 min,以人血清白蛋白(HSA)培养液作为对照组,以AGEs-HSA 200 mg/L培养液体外培养60 min为AGEs-HSA组,以ALA 200 μg/ml加入200 mg/L AGEs为ALA组,采用Hoechst 33258染色检测细胞凋亡,Western blot法检测NF-κB p65核蛋白表达,ELISA法测定天冬氨酸蛋白酶3(caspase-3)活性。结果 AGEs以浓度依赖方式促进内皮细胞凋亡。与对照组比较,AGEs-HSA组细胞NF-κB p65蛋白表达量明显减低,caspase-3活性明显增高(P0.05);与AGEs HSA组比较,ALA组内皮细胞凋亡明显减少,NF-κB p65蛋白表达量明显增加,caspase-3活性明显降低(P0.05)。结论 ALA可能通过增加NF-κB表达,抑制caspase-3激活的AGEs诱导内皮细胞凋亡。  相似文献   

20.
Dietary obesity is associated with type 2 diabetes and cardiovascular diseases, although the underlying mechanism is unknown. This study was undertaken to elucidate the role of angiotensin II and apoptosis signal regulating kinase-1 (ASK1) in obesity/diabetes-associated cardiovascular complications and hepatic steatosis. Mice fed a high-fat diet were treated with olmesartan, an angiotensin II type 1 receptor blocker, to elucidate the role of angiotensin II in diabetic mice. Treatment of mice fed a high-fat diet with olmesartan markedly suppressed cardiac inflammation and fibrosis, as well as vascular endothelial dysfunction and remodeling, induced by obesity/diabetes. Moreover, olmesartan suppressed the disruption of the vascular endothelial NO synthase dimer in diabetic mice. Olmesartan also significantly prevented hepatic steatosis and fibrosis in diabetic mice. These beneficial effects of olmesartan on diabetic mice were associated with the attenuation of ASK1 activation in these mice. ASK1-deficient mice and wild-type mice were compared, regarding the effects of a high-fat diet. A comparison between ASK1-deficient and wild-type mice showed that ASK1 deficiency attenuated cardiac inflammation and fibrosis, as well as vascular endothelial dysfunction and remodeling induced by obesity/diabetes. The amelioration of vascular endothelial impairment by ASK1 deficiency was attributed to the prevention of endothelial NO synthase dimer disruption. ASK1 deficiency also significantly lessened hepatic steatosis in diabetic mice. In conclusion, our work provided the evidence that ASK1 is significantly activated in diet-induced diabetic mice and contributes to cardiovascular diseases and hepatic steatosis in diabetic mice. Moreover, the beneficial effects of angiotensin II inhibition on dietary diabetic mice seem to be mediated by the inhibition of ASK1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号