首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oligodeoxynucleotides containing CpG motifs (CpG-ODNs) can protect against eosinophilic airway inflammation in asthma. Previously we have found that parenteral or mucosal administration of CpG-ODNs is effective in preventing (as well as reversing established) disease. In this study, we examined the effect of oral CpG-ODNs on the development of immune tolerance. Using an ovalbumin (OVA)-induced murine model of asthma, we found that CpG-ODNs, administered orally around the time of sensitization, prevented eosinophilic airway inflammation in a dose-dependent manner. Although oral co-administration of CpG-ODNs with OVA (known to induce tolerance) did not significantly change the inhibition of OVA-induced airway eosinophilia, it did modulate OVA-specific immunoglobulin responses: oral administration of OVA alone suppressed OVA-specific IgG1 production, but only mice that received CpG-ODNs demonstrated enhanced levels of OVA-specific IgG2c. Finally, we examined whether oral administration of CpG-ODNs, alone or with OVA, could reverse established eosinophilic airway inflammation. Again, neither OVA nor CpG-ODNs alone modulated established eosinophilic airway inflammation, but a combination of the OVA and CpG-ODNs successfully desensitized the mice. This desensitization was associated with suppression of OVA-specific IgE and enhancement of OVA-specific IgG2c production. These findings provide the first indication that oral administration of CpG-ODNs is effective in preventing and reversing antigen-induced eosinophilic airway inflammation. CpG-ODNs may be useful as a component of oral immunotherapy to promote tolerance in established asthma.  相似文献   

2.
BACKGROUND: Exposure to aerosolized harmless antigen such as ovalbumin (OVA) has previously been shown to induce inhalation tolerance, a state characterized by inhibition of IgE synthesis and airway inflammation, upon secondary immunogenic antigen encounter. Immune events associated with this phenomenon are still poorly understood. OBJECTIVE: The aim of this study was to investigate cellular and molecular mechanisms underlying this state of 'unresponsiveness'. METHODS: After initial repeated OVA exposure, mice were subjected to a protocol of antigen-induced airway inflammation, encompassing two intraperitoneal injections of OVA adsorbed to aluminium hydroxide followed by airway challenge. We assessed immune events in the draining lymph nodes after sensitization, and in the lungs after challenge. RESULTS: In animals initially exposed to OVA, we observed, at the time of sensitization, considerable expansion of T cells, many of which expressed the activation markers CD69 and CD25, as well as increased numbers of antigen-presenting cells, particularly B cells. While these animals produced low levels of IgE, the observed elevated levels of IgG1 signified isotype switching. Splenocytes and lymph node cells from OVA-exposed mice produced low levels of IL-4, IL-5, IL-13 and IFN-gamma, indicating aborted effector function of both T helper (Th)2- and Th1-associated cytokines. Real time quantitative polymerase chain reaction (PCR) (TaqMan) analysis of costimulatory molecules in the lungs after in vivo challenge showed that B7.1, B7.2, CD28 and CTLA-4 mRNA expression was low in animals initially exposed to OVA. Ultimately, these events were associated with abrogated airway inflammation and attenuated airway hyper-responsiveness. The decreased inflammation was antigen-specific and independent of IL-10 or IFN-gamma. CONCLUSION: Initial exposure to OVA establishes a programme that prevents the generation of intact, fully functional inflammatory responses upon secondary antigen encounter. The absence of inflammation, however, is not associated with categorical immune unresponsiveness.  相似文献   

3.
In subjects not developing allergy, inhalation of nonpathogenic protein antigens causes no harm and is associated with tolerance induction. Repeated exposure to aerosolized ovalbumin (OVA) likewise does not evoke airway inflammation and induces inhalation tolerance in experimental animals. The present study explored the role of the inhibitory T-cell receptor CTLA-4, in preventing inflammation and in establishing inhalation tolerance in response to a protein antigen. Naive BALB/c mice were injected intraperitoneally with anti-CTLA-4 monoclonal antibody or control immunoglobulin G (IgG) and exposed daily to aerosolized saline or OVA over 10 or 20 consecutive days. OVA-specific IgE levels and the inflammatory response in airway tissues were assessed 2 days after last exposure. The OVA-specific IgE response was also evaluated in mice subjected to a subsequent immunogenic OVA challenge 18 days after last aerosol exposure. Additional mice were made tolerant by 10 days of OVA aerosol exposure and were then subjected to an immunogenic OVA challenge combined with CTLA-4 blockade or control IgG treatment. Repeated inhalation of aerosolized OVA alone did not cause a pulmonary inflammatory response. In contrast, 10 days of OVA exposure combined with blockade of CTLA-4 led to development of eosinophilic lung infiltrates, BAL fluid eosinophilia, goblet cell hyperplasia and increased OVA-specific IgE. By 20 days of OVA exposure and blockade of CTLA-4, the inflammatory response remained. Mice exposed to aerosolized OVA for 10 days exhibited greatly reduced OVA-specific IgE responses to subsequent immunogenic OVA challenge. Blockade of CTLA-4 during the period of OVA aerosol exposure did not prevent this suppression of the OVA-specific IgE response. Neither did blockade of CTLA-4 during immunogenic OVA challenge alter the allergen-specific IgE response. Our results indicate that in vivo blockade of CTLA-4 modulates the initial immune response to a protein antigen allowing the development of allergen-induced airway inflammation in naive mice. However, this initial exaggerated immune response is followed by the induction of inhalation tolerance, demonstrating that CTLA-4 signalling is not decisive in this process. Our findings also show that once inhalation tolerance is established it may not be disrupted by blockade of CTLA-4.  相似文献   

4.
We have investigated the relationship between changes in T-cell activation in the bronchial mucosa, airway responsiveness and eosinophilic inflammation in sensitized Brown-Norway rats exposed to ovalbumin (OVA). Rats sensitized intraperitoneally with OVA and exposed to OVA aerosol 21 days later showed an enhanced increase in lung resistance (RNL) to acetylcholine (P < 0.05), and a significant increase in the number of eosinophils, neutrophils and lymphocytes in bronchoalveolar lavage fluid (BAL) (P < 0.05), compared with sensitized but saline-exposed controls. There was a significant increase in cells expressing the T-cell activation marker CD25 (P < 0.05) and the numbers of CD8+ T cells (P < 0.05), but not in the numbers of CD2+ and CD4+ cells. Eosinophil counts in airway submucosal tissue, as assessed by staining with BMK-13; a monoclonal antibody that binds to eosinophil major basic protein (MBP), were increased in rats receiving sensitization and exposure to OVA compared with naive controls (P < 0.002). There were significant positive correlations between the increase in RL to acetylcholine and the numbers of CD25+ (r = 0.92, P < 0.001), CD4+ (r = 0.77, P < 0.05), CD8+ (r = 0.71, P < 0.05) and MBP+ (r = 0.72, P < 0.03) cells in the OVA-sensitized and exposed group, but not in saline-exposed or naive animals. The number of MBP+ cells also correlated with CD25 expression (r = 0.71, P < 0.05). We conclude that airway hyper-responsiveness and inflammatory cell infiltration caused by OVA exposure of sensitized animals is associated with the presence of activated T cells in the airway mucosa. CD8+ T cells may play a role in the regulation of events leading to eosinophil inflammation and airway hyper-responsiveness.  相似文献   

5.
The objective of this study was to investigate the effect of airway gene transfer of interleukin (IL)-10, a cytokine with potent anti-inflammatory and immunoregulatory activities, on allergic mucosal sensitization. We used a recently described murine model that involves repeated exposures to aerosolized ovalbumin (OVA), daily for 10 d, in the context of granulocyte macrophage colony-stimulating factor (GM-CSF) expression in the airway environment achieved by intranasal delivery of a replication-deficient adenovirus carrying the GM-CSF transgene. The resulting inflammatory response was characterized by a T-helper 2 cytokine profile and marked airway eosinophilia. After complete resolution of the inflammatory response (Day 28), a single exposure to OVA reconstituted airway eosinophilia and induced airway hyperresponsiveness. We show that concurrent expression of IL-10 inhibited GM-CSF-driven OVA-specific inflammation in a dose-dependent manner. Specifically, IL-10 decreased the number of mononuclear cells, neutrophils, and eosinophils in the bronchoalveolar lavage fluid (BALF). Histologic evaluation of the tissue corroborated the findings in the BALF. Concurrent expression of IL-10 at the time of mucosal sensitization abrogated both the cellular and physiologic recall responses in vivo. Studies in interferon (IFN)-gamma knockout mice demonstrated that prevention of airway eosinophilia by IL-10 was IFN-gamma-independent and that expression of IL-10 was associated with decreased levels of IL-4, IL-5, and tumor necrosis factor-alpha in the BALF. Flow cytometric analysis of dispersed lung cells showed that expression of IL-10 in the airway reduced the absolute number of Class II major histocompatibility complex (MHC)(+)/CD11c(+) (dendritic cells) and Class II MHC(+)/Mac-1(bright) (macrophages) cells expressing the costimulatory molecules B7.1 and B7.2 by 30%. However, IL-10 coexpression did not prevent expansion of CD4 and CD8 T cells or expression of the early activation marker CD69 on T cells. Thus, airway gene transfer of IL-10 altered the immune response to OVA in a way that resulted in inhibition of airway inflammation. These findings suggest that development of an immunoregulatory strategy based on IL-10, alone or in combination with GM-CSF, warrants further consideration.  相似文献   

6.
The co-stimulatory molecule CD137 (4-1BB) plays a crucial role in the development and persistence of asthma, characterized by eosinophilic airway inflammation, mucus hypersecretion, airway hyperreactivity, increased T helper type 2 (Th2) cytokine production and serum immunoglobulin (Ig)E levels. We have shown previously that application of an agonistic CD137 monoclonal antibody (mAb) prevented and even reversed an already established asthma phenotype. In the current study we investigated whether deficiency of the CD137/CD137L pathway affects the development of allergic airway inflammation or the opposite immune reaction of respiratory tolerance. CD137−/− and wild-type (WT) mice were sensitized and challenged with the model allergen ovalbumin (OVA) and analysed for the presence of allergic disease parameters (allergy protocol). Some animals were tolerized by mucosal application of OVA prior to transferring the animals to the allergy protocol to analyse the effect of CD137 loss on tolerance induction (tolerance protocol). Eosinophilic airway inflammation, mucus hypersecretion, Th2 cytokine production and elevated allergen-specific serum IgE levels were increased equally in CD137−/− and WT mice. Induction of tolerance resulted in comparable protection from the development of an allergic phenotype in both mouse strains. In addition, no significant differences could be identified in CD4+, CD8+ and forkhead box protein 3 (FoxP3+) regulatory T cells, supporting the conclusion that CD137−/− mice show equal Th2-mediated immune responses compared to WT mice. Taken together, CD137−/− mice and WT mice develop the same phenotype in a murine model of Th2-mediated allergic airway inflammation and respiratory tolerance.  相似文献   

7.
BACKGROUND: Different subsets of dendritic cells (DCs), identified in mouse spleen by their differential expression of CD8 alpha, can induce different T-helper (Th) responses after systemic administration. CD8 alpha(-) DCs have been shown to preferentially induce Th type 2 (Th2) responses whereas CD8 alpha(+) DCs induce Th1 responses. OBJECTIVE: To study if these DC subsets can still induce different Th responses in the Th2-prone milieu of the lung and differentially prime for eosinophilic airway inflammation, typical of asthma. METHODS: Donor mice first received daily Flt3L injections to expand DC numbers. Purified CD8 alpha(+) or CD8 alpha(-) splenic DCs were pulsed with ovalbumin (OVA) or phosphate-buffered saline and injected intratracheally into recipient mice in which carboxyfluorescein diacetate succinimidyl ester-labelled OVA-specific T cell receptor transgenic T cells had been injected intravenously 2 days earlier. T cell proliferation and cytokine production of Ag-specific T cells were evaluated in the mediastinal lymph nodes (MLNs) 4 days later. The capacity of both subsets of DCs, to prime for eosinophilic airway inflammation was determined by challenging the mice with OVA aerosol 10 days later. RESULTS: CD8 alpha(-) DCs migrated to the MLN and induced a vigorous proliferative T cell response accompanied by high-level production of IL-4, IL-5, IL-10 and also IFN-gamma during the primary response and during challenge with aerosol, leading to eosinophilic airway inflammation. In the absence of migration to the MLN, CD8 alpha(+) DCs still induced a proliferative response with identical levels of IFN-gamma but reduced Th2 cytokines compared with CD8 alpha(-) DCs, which led to weak eosinophilic airway inflammation upon OVA aerosol challenge. Unpulsed DCs did not induce proliferation or cytokine production in Ag-specific T cells. CONCLUSION: CD8 alpha(-) DCs are superior compared with CD8 alpha(+) DCs in inducing Th2 responses and eosinophilic airway inflammation in the Th2-prone environment of the lung.  相似文献   

8.

Objective

This study aimed to determine whether Mycobacterium bovis Bacillus Calmette-Guérin (BCG) treatment can reverse an established allergic airway inflammation in a BALB/c mouse model of ovalbumin (OVA)-induced airway inflammation.

Methods

OVA sensitized BALB/c mice were challenged with aerosolized OVA on days 28 to 30, 34, 41 and 63. Mice were intranasal treated with BCG on days 35 and 42. Twenty-four hours after the last challenge, blood samples were collected to detect anti-OVA immunoglobulin isotypes, and bronchoalveolar lavage (BAL) was harvested for cell count. Additionally, lungs were collected for histological analysis, detection of the eosinophil peroxidase (EPO) activity and measurement of cytokines and CCL11. The expression of CTLA-4, Foxp3 and IL-10 was also determined in lung tissue by flow cytometry.

Results

BCG treatment was able to inhibit an established allergic Th2-response, by decreasing the allergen-induced eosinophilic inflammation, EPO activity, levels of CCL11 and IL-4, serum levels of IgE and IgG1. Mycobacteria treatment increased lung levels of IFN-γ, IL-10 and TGF-β, and expressions of Foxp3 and CTLA-4 in CD4+T cells. Additionally, an increased production of IL-10 by CD8+ T cells was observed, even though no detectable changes in CD4+IL-10+ was noticed.

Conclusion

BCG treatment inhibits features of allergic airway inflammation and the results suggest that the mechanism underlying the down-regulatory effects of BCG on OVA-induced airway inflammation appear to be associated with the induction of both Th1 and T regulatory immune responses.  相似文献   

9.
BACKGROUND: Aeroallergens continuously enter the respiratory tract of atopic individuals and provoke the development of asthma characterized by airway hyperreactivity (AHR) and inflammation. By contrast, nonatopic individuals are exposed to the same aeroallergens, but airway inflammation does not develop. However, the mechanisms that prevent allergen-induced respiratory diseases in nonatopic subjects are poorly characterized. OBJECTIVE: In this study we compared the role of allergen-specific T-cell tolerance and immune deviation in conferring protection against the development of allergen-induced AHR. METHODS: We exposed mice to intranasal ovalbumin (OVA) to induce T-cell tolerance and examined its effects on the subsequent development of AHR and inflammation. RESULTS: We demonstrated that exposure of mice to intranasal OVA resulted in peripheral CD4(+) T-cell unresponsiveness that very efficiently prevented not only the development of AHR but also greatly inhibited airway inflammation and OVA-specific IgE production. The induction of peripheral T-cell tolerance and protection against AHR were not dependent on the presence of IFN-gamma or IL-4. The development of AHR was also prevented by an OVA-specific T(H)1-biased immune response induced by inhalation of OVA in the presence of IL-12. However, the OVA-specific T(H)1 response was associated with a significant degree of pulmonary inflammation. CONCLUSION: These results indicate that both allergen-specific T-cell tolerance and T(H)1-biased immune deviation prevent the development of AHR, but T(H)1 responses are associated with significantly greater inflammation in the lung than is associated with T-cell unresponsiveness. Therefore CD4(+) T-cell unresponsiveness critically regulates immune responses to aeroallergens and protects against the development of allergic disease and asthma.  相似文献   

10.
We evaluated the effects of cigarette smoke (CS) on lung inflammation and remodeling in a model of ovalbumin (OVA)-sensitized and OVA-challenged mice. Male BALB/c mice were divided into 4 groups: non-sensitized and air-exposed (control); non-sensitized and exposed to cigarette smoke (CS), sensitized and air-exposed (OVA) (50 μg+OVA 1% 3 times/week for 3 weeks) and sensitized and cigarette smoke exposed mice (OVA+CS). IgE levels were not affected by CS exposure. The increases in total bronchoalveolar fluid cells in the OVA group were attenuated by co-exposure to CS, as were the changes in IL-4, IL-5, and eotaxin levels as well as tissue elastance (p<0.05). In contrast, only the OVA+CS group showed a significant increase in the protein expression of IFN-γ, VEGF, GM-CSF and collagen fiber content (p<0.05). In our study, exposure to cigarette smoke in OVA-challenged mice resulted in an attenuation of pulmonary inflammation but led to an increase in pulmonary remodeling and resulted in the dissociation of airway inflammation from lung remodeling.  相似文献   

11.
Murine asthma models suggest that failure of immune tolerance rather than a defective T helper cell type 1 (Th1) immunity underlies the immune biology of Th2-driven allergen-induced airway disease. Intriguingly, prolonged exposures can result in a full waning of inflammation. The mechanisms underlying this observation are not understood. We hypothesized that the fading of inflammation is the result of regulatory processes, characterized by altered dendritic cell (DC)-T cell interactions. First, we implemented a model in which mice developed Th2-driven airway disease. When we subjected these mice to prolonged antigen ovalbumin (OVA) exposures (8 wk), all inflammation disappeared. Re-immunization and re-challenge showed an inability to mount Th2-skewed immune responses, with absence of airway eosinophils, IgE, and Th2 cytokines. Besides specific immune tolerance, bystander protection was observed. A decrease in CD4+CD25+Foxp3+ T-regulatory cells, PD-1, and IL-10 expression was discerned as compared with acute inflammation. In addition, suppression of ICOS and CD28 was found, along with inhibited DC maturation. This process of disease inhibition surprisingly had a long-lasting memory and was not caused by endotoxin signaling through TLR-4. In summary, our results indicate that the disappearance of Th2-driven airway disease upon persistent antigen exposure is associated with the induction of immune tolerance. The tolerant state is antigen-dependent, and extends to bystander antigens. Moreover, this tolerance is characterized by an altered DC-T cell communication and is long-lasting. Our data further suggest that the mechanism of the disease inhibition after allergic airway inflammation differs from the anti-inflammatory mechanisms observed during acute eosinophilic airway inflammation.  相似文献   

12.
Although the recruitment of macrophages to the lung is a central feature of airway inflammation, its function in ongoing T(h)2 cell-mediated eosinophilic airway inflammation remains controversial. Here, we have demonstrated that the allergen-induced CD11b(+) CD11c(int) macrophage expressing CC chemokine receptor 3 (CCR3) in the lung performs a crucial function in the induction of eosinophilic asthma in a murine model. In the lungs of normal mice, residential cells evidencing high granularity phenotypically evidenced CD11b(int) CD11c(+) or CD11b(+) CD11c(int) cells, appearing at a 2:1 ratio. After allergen challenge, however, this reverses dramatically, up to a ratio of one to six. Approximately 91% of increased CD11b(+) CD11c(int) cells evidenced the expression of the CCR3 eotaxin receptor, but not other chemokine receptors, such as CCR5 and CXCR4. Interestingly, the CD11b(+) CD11c(int) cells purified from the lungs of OVA (ovalbumin)-sensitized and challenged mice evidenced higher antigen-presenting activity than was observed in CD11b(int) CD11c(+) cells. In order to investigate the in vivo function of CD11b(+) CD11c(int) cells, the cells were isolated from the lungs of OVA-sensitized and challenged mice and then adoptively transferred prior to the allergen challenge of normal mice. In the CD11b(+) CD11c(int)-transferred mice airway hyperresponsiveness, eosinophilic inflammation in the lung and T(h)2 cytokine secretion in the bronchoalveolar lavage fluids were significantly enhanced as the result of OVA challenge, as compared with the mice that received OVA-primed CD90(+) T cells or CD11b(int) CD11c(+) cells. These findings show that CD11b(+) CD11c(int) macrophages expressing CCR3 as key pro-inflammatory cells are both necessary and sufficient for allergen-specific T cell stimulation during ongoing eosinophilic airway inflammation.  相似文献   

13.
Interleukin (IL)-18, which is produced by activated monocytes/macrophages and airway epithelial cells, is suggested to contribute to the pathophysiology of asthma by modulating airway inflammation. However, the involvement of IL-18 on modulating chronic airway inflammation and airway remodelling, which are characterized in a refractory asthma model exposed to long-term antigen, has not been investigated sufficiently. We examined the role of IL-18 in chronic airway inflammation and airway remodelling by long-term antigen exposure. IL-18-deficient and C57BL/6-wild-type mice were sensitized by ovalbumin (OVA) and were then exposed to aerosolized OVA twice a week for 12 weeks. We assessed airway inflammation by assessing the infiltration of cells into the airspace and lung tissues, and airway remodelling by airway mucus expression, peribronchial fibrosis and smooth muscle thickness. In IL-18-deficient mice, when exposed to OVA, the total cells and neutrophils of the bronchoalveolar lavage fluid (BALF) were diminished, as were the number of infiltrated cells in the lung tissues. IL-18-deficient mice exposed to OVA after 12 weeks showed significantly decreased levels of interferon (IFN)-gamma, IL-13 and transforming growth factor (TGF)-beta1 in the BALF. The airway hyperresponsiveness to acetyl-beta-methacholine chloride was inhibited in IL-18-deficient mice in comparison with wild-type mice. In addition, IL-18-deficient mice exposed to OVA had fewer significant features of airway remodelling. These findings suggest that IL-18 may enhance chronic airway inflammation and airway remodelling through the production of IFN-gamma, IL-13 and TGF-beta1 in the OVA-induced asthma mouse model.  相似文献   

14.
Vaccination with allergen-encoding DNA has been proposed as having potential for allergen-specific immunotherapy. In this study, we examine the therapeutic effect of allergen-encoding DNA vaccination directly to dendritic cells (DCs) on allergen-induced allergic airway inflammation in a mouse model and explore potential mechanism. Ovalbumin (OVA)-sensitized and challenged mice were immunized with DNA vaccine and received bronchoalveolar lavage (BAL) 1 day after the last challenge, to measure BAL levels of interleukin (IL)-4, IL-5, interferon (IFN)-gamma and differential cell count. Pulmonary DCs and Spleen DCs were purified and sorted according to the expression of CD(11c) (+)CD(80) (+) and CD(11c) (+)CD(86) (+) co-stimulatory molecules. Our data demonstrated that DNA vaccine therapy with OVA-Fc-pcDNA(3.1) significantly prevented OVA-increased levels of IL-4, IL-5 and the percentage of eosinophils and OVA-decreased level of IFN-gamma. OVA-Fc-pcDNA(3.1)-treated mice had less severity of airway inflammation, and lower expression of CD(11c) (+)CD(80) (+) and CD(11c) (+)CD(86) (+) on pulmonary DCs, as compared with animals with OVA-pcDNA(3.1,) pcDNA(3.1) and OVA respectively. DNA vaccine encoding both Fc and OVA was shown to be more effective than DNA vaccine encoding OVA alone. Our data indicate that Fc-antigen combination-encoding DNA vaccination has better preventive effects on antigen-induced airway inflammation by regulating DCs, and may be a new alternative therapy for asthma.  相似文献   

15.
哮喘小鼠气道上皮TSLP表达及激活DCs加重气道炎症的研究   总被引:2,自引:0,他引:2  
目的 研究支气管哮喘小鼠气道上皮中胸腺间质淋巴细胞生成素(TSLP)表达,探讨其对哮喘小鼠肺部炎症的影响.方法 BALB/c小鼠分为生理盐水对照组、哮喘模型组和TSLP中和抗体干预组.通过气道反应性和肺组织病理学评价哮喘模型;酶联免疫吸附试验(ELISA)检测支气管肺泡灌洗液(BALF)上清中IL-4、IL-5和IL13的含量;实时荧光定量PCR(qRT-PCR)测定肺组织中TSLP mRNA的表达;免疫组化及Western blot法测定肺组织中TSLP蛋白的表达;流式细胞术检测BALF中树突状细胞(OCs)表面CD40、CD80、CD86的表达水平.结果 小鼠气道反应性增高和肺组织病理学检查结果均符合哮喘的典型表现证实造模成功;哮喘组BALF中IL-4、IL-5和IL-13的水平显著高于正常组(P<0.05),且TSLP与其成正相关;与正常对照组相比,哮喘组气道上皮TSLPmRNA和蛋白高表达,两组间差异有统计学意义(P<0.05);哮喘组BALF中DCs表面CD40、CD80、CD86表达明显高于正常组(P<0.05).TSLP中和抗体干预后,BALF中DCs表面CD40、CD80、CD86表达明显减低,并进一步减少IL-4、IL-5和IL-13的表达.结论 哮喘气道上皮中TSLP表达增高,TSLP通过上调DCs表面CD40、CD80、CD86的表达,激活DCs诱导CD4~+T细胞向Th2分化发育,与加重哮喘的气道炎症有关;TSLP抗体干预可阻断DCs的活化,减少Th2细胞因子的分泌,这些因素可能与减轻哮喘炎症反应有关,为哮喘治疗途径提供新的思路.  相似文献   

16.
BACKGROUND: New preventive strategies against the development of allergic diseases focus on potentially immunomodulatory components, such as bacterial LPSs. Optimal time frames for initiating immunomodulation to receive a sufficient effect against allergen sensitization are still unclear. OBJECTIVE: Using a mouse model, we investigated the influence of prenatal LPS exposure on later allergen-mediated sensitization and airway inflammation in the offspring. METHODS: Pregnant BALB/c mice were repeatedly exposed to aerosolized LPS (LPS Escherichia coli; 3x per week, day 7 of gestation time up to delivery). Some of the offspring were further exposed to aerosolized LPS before allergen sensitization with ovalbumin (OVA; administered intraperitoneally day 28 up to day 42) and OVA airway challenges (days 56-58). Positive control animals were placebo exposed to PBS instead of LPS, and negative control animals were first placebo exposed and later placebo sensitized with PBS instead of OVA. RESULTS: Compared with positive control animals, prenatal LPS exposure suppressed (1) allergen-specific sensitization (IgE production), (2) eosinophilic airway inflammation (reduced numbers of eosinophils in bronchoalveolar lavage fluids), and (3) in vivo airway reactivity in response to methacholine. These effects occurred only when prenatal was combined with further postnatal LPS exposure. Suppression of allergen-mediated inflammatory responses was associated with increased Toll-like receptor and T-bet expression by lung tissues and a shift toward predominantly T(H)1 immune responses in spleen cells cultured with OVA in vitro. CONCLUSION: Prenatal initiated and postnatal sustained LPS exposure increased endotoxin susceptibility and prevented later allergen sensitization in offspring through inhibition of T(H)2 immune responses. CLINICAL IMPLICATIONS: Immunomodulation with bacterial compounds during gestation time might be an effective mode for first-step primary prevention against allergic diseases.  相似文献   

17.
Immunostimulatory sequences of DNA (ISS) inhibit eosinophilic airway inflammation, Th2 responses, and airway hyperreactivity (AHR) in mouse models of acute ovalbumin (OVA)-induced airway inflammation. To determine whether ISS inhibits airway remodeling, we developed a mouse model of airway remodeling in which OVA-sensitized mice were repeatedly exposed to intranasal OVA administration for 1-6 mo. Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation and sustained AHR to methacholine compared with control mice. In addition, the mice chronically exposed to OVA developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer, peribronchial myofibroblast accumulation, expression of the profibrotic growth factor transforming growth factor-beta, and subepithelial collagen deposition (assessed by quantitation of the area of peribronchial trichrome staining using image analysis, and immunostaining with anti-collagen V antibodies). Administration of ISS systemically every other week significantly inhibited the development of AHR, eosinophilic inflammation, airway mucus production, and importantly, airway remodeling in mice chronically exposed to OVA for 3-6 mo. In addition, ISS significantly reduced bronchoalveolar lavage and lung levels of the profibrotic cytokine transforming growth factor-beta. These studies demonstrate that ISS prevents not only Th2-mediated airway inflammation in response to acute allergen challenge, but also airway remodeling associated with chronic allergen challenge.  相似文献   

18.
Creatine supplement is the most popular nutritional supplement, and has various metabolic functions and sports medicine applications. Creatine supplementation increases muscle mass and can decrease muscular inflammation. Some studies have also suggested a beneficial role of creatine supplementation on chronic pulmonary diseases such as chronic obstructive pulmonary disease and cystic fibrosis. Among athletes, the prevalence of asthma is high, and many of these individuals may be taking creatine. However, the effects of creatine supplementation on chronic pulmonary diseases of allergic origin have not been investigated. In the present study, we analyzed the effects of creatine supplementation on a model of chronic allergic lung inflammation. Thirty-one Balb/c mice were divided into four groups: control, creatine (Cr), ovalbumin (OVA), and OVA+Cr. OVA and OVA+Cr groups were sensitized with intraperitoneal injections of OVA on Days 0, 14, 28, and 42. OVA challenge (OVA 1%) and Cr treatment (0.5 g/kg/d) were initiated on Day 21 and lasted until Day 53. We determined the index of hyperresponsiveness, the serum levels of OVA-specific immunoglobulin (Ig)E and IgG(1), and the total and differential cell counts in bronchoalveolar lavage fluid. We also quantified airway inflammation, and the airway density of IL-4+, IL-5+, IL-2+, IFN-gamma+, and insulin-like growth factor (IGF)-1+ cells, collagen and elastic fibers, and airway smooth muscle thickness. Our results showed that creatine in OVA-sensitized mice increased hyperresponsiveness; eosinophilic inflammation; airway density of IL-4+, IL-5+, and IGF-1 inflammatory cells; airway collagen and elastin content; and smooth muscle thickness. The results show that creatine supplementation exacerbates the lung allergic response to OVA through a T helper cell type 2 pathway and increased IGF-1 expression.  相似文献   

19.
Background Allergic rhinitis (AR) and asthma often coexist and are referred to as ‘united airways’ disease. However, the molecular and cellular pathways that are crucially involved in the interaction between upper and lower airways remain to be identified. Objective We sought to assess whether and how AR exacerbates lower airway inflammation upon allergen challenge in mice. Methods We previously developed an intranasal ovalbumin (OVA)‐driven AR model, characterized by nasal eosinophilic inflammation, enhanced serum levels of OVA‐specific IgE and Th2 cytokine production in cervical lymph nodes. In OVA‐sensitized mice with or without AR, a lower airway challenge was given, and after 24 h, lower airway inflammation was analysed. Results We found that AR mice were more susceptible to eosinophilic inflammation following a lower airway OVA challenge than OVA‐sensitized controls. AR mice manifested increased numbers of eosinophils in bronchoalveolar lavage fluid and increased inter‐cellular adhesion molecule‐1 (ICAM‐1) expression on lung endothelium, when compared with OVA‐sensitized controls. Depletion of T cells in OVA‐challenged AR mice completely abrogated all hallmarks of lower airway inflammation, including enhanced IL‐5 and tissue eosinophilia. Conversely, adoptive transfer of Th2 effector cells in naïve animals induced lower airway eosinophilic inflammation after challenge with OVA. Blocking T cell recirculation during AR development by the spingosine‐1 analogue FTY720 also prevented lower airway inflammation including ICAM‐1 expression in AR mice upon a single lower airway challenge. Conclusion Our mouse model of ‘united airways’ disease supports epidemiological and clinical data that AR has a significant impact on lower airway inflammation. Circulating Th2 effector cells are responsible for lung priming in AR mice, most likely through up‐regulation of ICAM‐1. Cite this as: A. KleinJan, M. Willart, M. van Nimwegen, K. Leman, H. C. Hoogsteden, R.W. Hendriks and B.N. Lambrecht, Clinical & Experimental Allergy, 2010 (40) 494–504.  相似文献   

20.
The induction of peripheral tolerance is one of the feasible approaches for the control of autoimmunities and allergies. Tolerance induction in the intestine has been studied extensively and therapeutic applications to autoimmunities are in progress, whereas tolerance in the respiratory tract is poorly investigated. We examined the immunoregulatory mechanisms for evading exaggerated inflammatory responses in the murine airway mucosa. Administration of an optimal dose of ovalbumin (OVA) to the trachea elicited eosinophilic inflammation in the trachea of OVA/aluminum hydroxide-sensitized BALB/c mice, whereas higher doses were unable to do so. This failure paralleled the downregulation of interleukin-4 production by mediastinal lymph node (LN) T cells. This high-dose tolerance was attributable to the mechanisms of antigen (Ag)-specific suppression, because the adoptive transfer of CD4(+) LN T cells from the OVA-tolerant mice inhibited the OVA-specific, but not irrelevant Ag KLH-specific, eosinophilic responses. The inhibitory effects were neutralized by the intratracheal administration of anti-transforming growth factor (TGF)-beta, but not that of anti-interferon (IFN)-gamma, monoclonal antibodies, indicating that the high-dose tolerance was mediated by secreted TGF-beta, but not by the dominance of transferred T helper (Th)1 cells over Th2 cells. The pivotal role of TGF-beta was reinforced by the finding that the LN cells from the OVA-tolerant mice produced TGF-beta in response to the in vitro Ag stimulation. These results demonstrate a novel regulatory mechanism in the airway: that TGF-beta secreted by T cells plays an important role in the downmodulation of the immune responses to high doses of Ag which might otherwise induce deleterious inflammation in the airway mucosal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号