首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A rapid and efficient method for expansion of human mesenchymal stem cells   总被引:8,自引:0,他引:8  
During the past decade, there has been much interest in the use of human mesenchymal stem cells (hMSCs) in bone tissue engineering. HMSCs can be obtained relatively easily and expanded rapidly in culture, but for clinical purposes large numbers are often needed and the cost should be kept to a minimum. A rapid and efficient culturing protocol would therefore be beneficial. In this study, we examined the effect of different medium compositions on the expansion and osteogenic differentiation of bone marrow-derived hMSCs from 19 donors. We also investigated the effect of low seeding density and dexamethasone on both hMSCs expansion and their in vitro and in vivo osteogenic differentiation capacity. HMSCs seeded at a density of 100 cells/cm2 had a significantly higher growth rate than at 5000 cell/cm2, which was further improved by the addition of dexamethasone. Expanded hMSCs were characterized in vitro on the basis of positive staining for CD29, CD44, CD105, and CD166. The in vitro osteogenic potential of expanded hMSCs was assessed by flow cytometric staining for alkaline phosphatase. In vivo bone-forming potential of the hMSCs was assessed by seeding the cells in ceramic scaffolds, followed by subcutaneous implantation in nude mice and histopathologic assessment of de novo bone formation after 6-week implantation. Expanded hMSCs from all donors displayed similar osteogenic potential independent of the culture conditions. On the basis of these results we have developed an efficient method to culture hMSCs by seeding the cells at 100 cells/cm2 in an alpha-minimal essential medium-based medium containing dexamethasone.  相似文献   

2.
Human mesenchymal stromal cells (hMSCs) are able to differentiate into a wide variety of cell types, which makes them an interesting source for tissue engineering applications. On the other hand, these cells also secrete a broad panel of growth factors and cytokines that can exert trophic effects on surrounding tissues. In bone tissue engineering applications, the general assumption is that direct differentiation of hMSCs into osteoblasts accounts for newly observed bone formation in vivo. However, the secretion of bone-specific growth factors, but also pro-angiogenic factors, could also contribute to this process. We recently demonstrated that secretion of bone specific growth factors can be enhanced by treatment of hMSCs with the small molecule db-cAMP (cAMP) and here we investigate the biological activity of these secreted factors. We demonstrate that conditioned medium contains a variety of secreted growth factors, with differences between medium from basic-treated and cAMP-treated hMSCs. We show that conditioned medium from cAMP-treated hMSCs increases proliferation of various cell types and also induces osteogenic differentiation, whereas it has differential effects on migration. Microarray analysis on hMSCs exposed to conditioned medium confirmed upregulation of pathways involved in proliferation as well as osteogenic differentiation. Our data suggests that trophic factors secreted by hMSCs can be tuned for specific applications and that a good balance between differentiation on the one hand and secretion of bone trophic factors on the other, could potentially enhance bone formation for bone tissue engineering applications.  相似文献   

3.
Activation of the protein kinase A (PKA) pathway with dibutyryl cyclic adenosine monophosphate (db-cAMP) was recently shown to enhance osteogenic differentiation of human mesenchymal stromal cells (hMSCs) in vitro and bone formation in vivo. The major drawback of this compound is its inhibitory effect on proliferation of hMSCs. Therefore, we investigated whether fine-tuning of the dose and timing of PKA activation could enhance bone formation even further, with minimum effects on proliferation. To test this, we selected two different PKA activators (8-bromo-cAMP (8-br-cAMP) and forskolin) and compared their effects on proliferation and osteogenic differentiation with those of db-cAMP. We found that all three compounds induced alkaline phosphatase levels, bone-specific target genes, and secretion of insulin-like growth factor-1, although 8-br-cAMP induced adipogenic differentiation in long-term cultures and was thus considered unsuitable for further in vivo testing. All three compounds inhibited proliferation of hMSCs in a dose-dependent manner, with forskolin inhibiting proliferation most. The effect of forskolin on in vivo bone formation was tested by pretreating hMSCs before implantation, and we observed greater amounts of bone using forskolin than db-cAMP. Our data show forskolin to be a novel agent that can be used to increase bone formation and also suggests a role for PKA in the delicate balance between adipogenic and osteogenic differentiation.  相似文献   

4.
Elucidating the regulatory mechanisms of osteogenesis of human mesenchymal stem cell (hMSC) is important for the development of cell therapies for bone loss and regeneration. Here we showed that hsa-miR-199a-5p modulated osteogenic differentiation of hMSCs at both early and late stages through HIF1a pathway. hsa-miR-199a expression was up-regulated during osteogenesis for both of two mature forms, miR-199a-5p and -3p. Over-expression of miR-199a-5p but not -3p enhanced differentiation of hMSCs in vitro, whereas inhibition of miR-199a-5p reduced the expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and mineralization. Furthermore, over-expression of miR-199a enhanced ectopic bone formation in vivo. Chitosan nanoparticles were used for delivery of stable modified hsa-miR-199a-5p (agomir) both in vitro and in vivo, as a proof-of-concept for stable agomir delivery on bone regeneration. The hsa-mir199a-5p agomir were mixed with Chitosan nanoparticles to form nanoparticle/hsa-mir199a-5p agomir plasmid (nanoparticle/agomir) complexes, and nanoparticle/agomir complexes could improve the in vivo regeneration of bone. Further mechanism studies revealed that hypoxia enhanced osteogenesis at early stage and inhibited osteogenesis maturation at late stage through HIF1a-Twist1 pathway. At early stage of differentiation, hypoxia induced HIF1a-Twist1 pathway to enhance osteogenesis by up-regulating miR-199a-5p, while at late stage of differentiation, miR-199a-5p enhanced osteogenesis maturation by inhibiting HIF1α-Twist1 pathway.  相似文献   

5.
This study investigated the effects of a calcium magnesium silicate bioceramic (akermanite) for bone regeneration in vitro and in vivo, with β-tricalcium phosphate (β-TCP) as a control. In vitro, the human bone marrow-derived mesenchymal stromal cells (hBMSCs) were cultured in an osteogenic medium supplemented with a certain concentration of two bioceramics' extracts for 20 days. An MTT assay showed that akermanite extract promoted proliferation of hBMSC significantly more than did β-TCP extract. The results of alkaline phosphatase (ALP) activity test and the expression of osteogenic marker genes such as ALP, osteopontin (OPN), osteocalcin (OCN) and bone sialoprotein (BSP) demonstrated that the osteogenic differentiation of hBMSC was enhanced more by akermanite extract than by β-TCP extract. In vivo, a histomorphology analysis and histomorphometry of the two porous bioceramics implants in rabbit femur defect models indicated that both in early- and late-stage implantations, akermanite promoted more osteogenesis and biodegradation than did β-TCP; and in late-stage implantations, the rate of new bone formation was faster in akermanite than in β-TCP. These results suggest that akermanite might be a potential and attractive bioceramic for tissue engineering.  相似文献   

6.
One of the primary goals for tissue engineering is to induce new tissue formation by stimulating specific cell function. Human mesenchymal stem cells (hMSCs) are a particularly important cell type that has been widely studied for differentiation down the osteogenic (bone) lineage, and we recently found that simple phosphate functional groups incorporated into poly(ethylene glycol) (PEG) hydrogels could induce osteogenesis without using differentiation medium by unknown mechanisms. Here, we aimed to determine whether direct or indirect cell/materials interactions were responsible for directing hMSCs down the osteogenic lineage on phosphate (PO4)-functionalized PEG hydrogels. Our results indicated that serum components adsorbed onto PO4-PEG hydrogels from medium in a presoaking step were sufficient for attachment and spreading of hMSCs, even when seeded in serum-free conditions. Blocking antibodies for collagen and fibronectin (targeted to the hydrogel), as well as β1 and β3 integrin blocking antibodies (targeted to the cells), each reduced attachment of hMSCs to PO4-PEG hydrogels, suggesting that integrin-mediated interactions between cells and adsorbed matrix components facilitate attachment and spreading. Outside-in signaling, and not merely shape change, was found to be required for osteogenesis, as alkaline phosphatase activity and expression of CBFA1, osteopontin and collagen-1 were each significantly down regulated upon inhibition of focal adhesion kinase phosphorylation even though the focal adhesion structure or cell shape was unchanged. Our results demonstrate that complex function (i.e. osteogenic differentiation) can be controlled using simple functionalization strategies, such as incorporation of PO4, but that the role of these materials may be due to more complex influences than has previously been appreciated.  相似文献   

7.
Platelet-rich plasma (PRP) contains a mixture of growth factors that play an important role in wound and fracture healing. While PRP enhanced bone formation by autogenous cancellous bone grafts, its influence in combination with different bone substitutes remained unknown. This study evaluated the effect of PRP on osteogenic differentiation and ectopic bone formation of human mesenchymal stem cells (MSC) in distinct resorbable calcium phosphate ceramics. Calcium-deficient hydroxyapatite (CDHA) blocks with a large specific surface area (48 m2/g) and beta-tricalcium phosphate (beta-TCP) with a low specific surface area (<0.5 m2/g) were loaded with 2 x 10(5) bone marrow-derived MSC. Half of the specimens were treated with 5-fold concentrated PRP. Biocomposites were implanted subcutaneously into SCID mice or kept under osteogenic culture conditions for 2 weeks before implantation. The addition of PRP increased the specific alkaline phosphatase (ALP) activity (p = 0.012) in undifferentiated MSC/CDHA composites but not in MSC/beta-TCP composites. Osteogenic preinduction was ineffective for CDHA and reduced ALP activity of beta-TCP composites significantly at explantation. Ectopic bone formation was stronger in MSC/CDHA (7/32) compared to MSC/beta-TCP (2/30) composites, but no influence of PRP was evident. In conclusion, the effect of PRP depended on the type of ceramic and the differentiation status of the MSC, and enhanced ALP activity of MSC on the high surface scaffold CDHA only, but PRP did not improve osteogenesis in our setting.  相似文献   

8.
Composites of bone marrow-derived osteoblasts (BMOs) and porous ceramics have been widely used as a bone graft model for bone tissue engineering. Perfusion culture has potential utility for many cell types in three-dimensional (3D) culture. Our hypothesis was that perfusion of medium would increase the cell viability and biosynthetic activity of BMOs in porous ceramic materials, which would be revealed by increased levels of alkaline phosphate (ALP) activity and osteocalcin (OCN) and enhanced bone formation in vivo. For testing in vitro, BMO/beta-tricalcium phosphate composites were cultured in a perfusion container (Minucells and Minutissue, Bad Abbach, Germany) with fresh medium delivered at a rate of 2 mL/h by a peristaltic pump. The ALP activity and OCN content of composites were measured at the end of 1, 2, 3, and 4 weeks of subculture. For testing in vivo, after subculturing for 2 weeks, the composites were subcutaneously implanted into syngeneic rats. These implants were harvested 4 or 8 weeks later. The samples then underwent a biochemical analysis of ALP activity and OCN content and were observed by light microscopy. The levels of ALP activity and OCN in the composites were significantly higher in the perfusion group than in the control group (p < 0.01), both in vitro and in vivo. Histomorphometric analysis of the hematoxylin- and eosin-stained sections revealed a higher average ratio of bone to pore in BMO/beta-TCP composites of the perfusion group after implantation: 47.64 +/- 6.16 for the perfusion group and 26.22 +/- 4.84 for control at 4 weeks (n = 6, p < 0.01); 67.97 +/- 3.58 for the perfusion group and 47.39 +/- 4.10 for control at 8 weeks (n = 6, p < 0.05). These results show that the application of a perfusion culture system during the subculture of BMOs in a porous ceramic scaffold is beneficial to their osteogenesis. After differentiation culture in vitro with the perfusion culture system, the activity of the osteoblastic cells and the consequent bone formation in vivo were significantly enhanced. These results suggest that the perfusion culture system is a valuable and convenient tool for applications in tissue engineering, especially in the generation of artificial bone tissue.  相似文献   

9.
Lee JS  Lee JM  Im GI 《Biomaterials》2011,32(3):760-768
In the present study, we tested the hypothesis that electroporation-mediated transfer of Runx2, Osterix, or both genes enhances the in vitro and in vivo osteogenesis from adipose stem cells (ASCs). ASCs were transfected with Runx2, Osterix, or both genes using electroporation, and further cultured in monolayer or in PLGA scaffold under osteogenic medium for 14 days, then analyzed for in vitro osteogenic differentiation. Transfected ASC-PLGA scaffold hybrids were also implanted on nude mice to test for in vivo ectopic bone formation. Runx2 and Osterix genes were strongly expressed in ASCs transfected with each gene on day 7, decreasing rapidly on day 14. Runx2 protein was strongly expressed in ASCs transfected with the Runx2 gene, while Osterix protein was strongly expressed in ASCs transfected with either or both Runx2 and Osterix genes. Overexpression of Runx2 and Osterix significantly increased the gene expression of osteogenic differentiation markers (alkaline phosphatase [ALP], osteocalcin [OCN], type I collagen [COL1A1], and bone sialoprotein [BSP]) in ASCs. Transfection of Runx2 and Osterix genes enhanced the protein expression of OCN, type I collagen, and BSP, as demonstrated by Western blot analysis, and ALP activity as well as enhancing mineralization in the monolayer culture and ASC-PLGA scaffold hybrids. Runx2- or Osterix-transfected ASC-PLGA scaffold hybrids promoted bone formation in nude mice after 6 weeks of in vivo implantation.  相似文献   

10.
11.
Kim S  Kim SS  Lee SH  Eun Ahn S  Gwak SJ  Song JH  Kim BS  Chung HM 《Biomaterials》2008,29(8):1043-1053
We have previously reported the efficient osteogenic differentiation of human embryonic stem cells (hESCs) by co-culture with primary human bone-derived cells (hPBDs) without the use of exogenous factors. In the present study, we explored whether osteogenic cells derived from hESCs (OC-hESCs) using the previously reported method would be capable of regenerating bone tissue in vivo. A three-dimensional porous poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffold was used as a cell delivery vehicle. In vivo implantation of OC-hESC-seeded scaffolds showed significant bone formation in the subcutaneous sites of immunodeficient mice at 4 and 8 weeks after implantation (n=5 for each time point). Meanwhile, implantation of the control no cell-seeded scaffolds or human dermal fibroblast-seeded scaffolds did not show any new bone formation. In addition, the presence of BMP-2 (1 microg/scaffold) enhanced new bone tissue formation in terms of mineralization and the expression of bone-specific genetic markers. According to FISH analysis, implanted OC-hESCs remained in the regeneration sites, which suggested that the implanted cells participated in the formation of new bone. In conclusion, OC-hESCs successfully regenerated bone tissue upon in vivo implantation, and this regeneration can be further enhanced by the administration of BMP-2. These results suggest the clinical feasibility of OC-hESCs as a good alternative source of cells for bone regeneration.  相似文献   

12.
Stem cells exist in an in vivo microenvironment that provides biological and physiochemical cues to direct cell fate decisions. How the stem cells sense and respond to these cues is still not clearly understood. Gold nanoparticles (AuNPs) have been widely used for manipulation of cell behavior due to their ease of synthesis and versatility in surface functionalization. In this study, AuNPs with amine (AuNP–NH2), carboxyl (AuNP–COOH) and hydroxyl (AuNP–OH) functional groups possessing different surface charge were synthesized. Human bone marrow-derived mesenchymal stem cells (hMSCs) were treated with the surface functionalized AuNPs and assessed for cell viability and osteogenic differentiation ability. The surface functionalized AuNPs were well tolerated by hMSCs and showed no acute toxicity. Positively charged AuNPs showed higher cellular uptake. AuNPs did not inhibit osteogenesis but ALP activity and calcium deposition were markedly reduced in AuNP–COOH treatment. Gene profiling revealed an upregulation of TGF-β and FGF-2 expression that promoted cell proliferation over osteogenic differentiation in hMSCs. These results provide some insight on the influence of surface functionalized AuNPs on hMSCs behavior and the use of these materials for strategic tissue engineering.  相似文献   

13.
Loss of function mutations in FGD1 result in faciogenital dysplasia, an X-linked human developmental disorder that adversely affects the formation of multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor that specifically activates Cdc42, a Rho family small GTPase that regulates a variety of cellular behaviors. We have found that FGD1 is expressed in human mesenchymal stem cells (hMSCs) isolated from adult bone marrow. hMSCs are multipotent cells that can differentiate into many cell types, including fibroblasts, osteoblasts, adipocytes, and chondrocytes, and are thought to play a role in maintaining musculoskeletal tissues throughout life. We demonstrate an active role of FGD1 in osteogenic differentiation of hMSCs. During osteogenic differentiation of hMSCs in culture, we observed up-regulation of both FGD1 expression and Cdc42 activity. Activating FGD1/Cdc42 signaling by overexpression of either FGD1 or constitutively active Cdc42 promoted hMSC osteogenesis, while inhibiting Cdc42 signaling by either dominant negative mutants of FGD1 or Cdc42 suppressed osteogenesis. These results demonstrate an important role for FGD1/Cdc42 signaling in hMSC osteogenesis and suggest that the defects in bone remodeling in faciogenital dysplasia may persist throughout adult life and serve as a potential pathway that may be targeted for enhancing bone regeneration.  相似文献   

14.
目的 研究体外冲击波是否通过三磷酸腺苷(ATP)激活P2X7受体,诱导人骨髓间充质干细胞(human mesenchymal stem cells,hMSCs)向成骨细胞分化。方法 培养hMSCs细胞,检测冲击波是否引起其向外释放ATP;通过检测碱性磷酸酶(ALP)活性、骨钙素表达和钙结节形成,判断骨化形成和钙质沉积;用实时定量PCR检测P2X7受体的mRNA表达;用ATP水解酶、P2X7受体的siRNA以及 P2受体的抑制剂评估ATP释放和P2X7受体在冲击波诱导hMSCs成骨分化中的作用。结果 冲击波可引起细胞内ATP向外释放,冲击波和细胞外ATP能够诱导hMSCs向成骨分化,采用ATP水解酶、P2X7受体的siRNA和抑制剂能够抑制冲击波引起的hMSCs成骨化作用。结论 冲击波通过引起细胞内ATP向外释放,激活P2X7受体传导信号通路,促进hMSCs向成骨细胞分化。本研究结果为冲击波促进骨折愈合和治疗骨不连疗法提供了理论依据。  相似文献   

15.
Mesenchymal stem cells (MSCs) represent an attractive cell source for tissue engineering applications, since they are readily isolated from adult bone marrow and have the ability to differentiate along multiple mesenchymal lineages, including osteogenic. Currently, utilization of MSCs for bone tissue engineering is limited because of the attenuation of their osteogenic differentiation potential and in vivo bone-forming capacity following ex vivo expansion on conventional tissue culture plastic (TCP). Previously, we demonstrated that a denatured type I collagen (DC) matrix promotes the maintenance of MSC in vitro osteogenic differentiation potential during ex vivo expansion in contrast to TCP. In this study, we further demonstrate that the maintenance of MSC osteogenic differentiation potential is primarily due to the ability of DC matrix to influence the retention of early passage osteogenic functions in late passage (LP) cells during ex vivo expansion, in contrast to solely enhancing attenuated LP cellular functions during osteogenic differentiation. Serum-associated factors played a significant role in influencing the retention of MSC osteogenic differentiation potential during expansion on the DC matrix. Significantly, the results show that although LP cells expanded ex vivo on TCP highly attentuate their in vivo bone-forming capacity, the expansion of MSCs on DC matrix preserves this ability as determined by histological, histomorphometric, and bone mineral density evaluations of MSC-seeded hydroxyapatite/tricalcium phosphate scaffolds following an 8-week implantation period within a heterotopic muscle pouch model. These findings provide further insight into the importance of matrix-mediated effects on MSC function and selective factors important in this process.  相似文献   

16.
Calcium phosphate (CaP) compounds, the main inorganic constituent of mammalian bone tissues, are believed to support bone precursor cell growth and osteogenic differentiation. Chitosan, a deacetylated derivative of chitin, is a versatile biopolymer to offer broad possibilities for cell-based tissue engineering. In the present study, different scales of CaP crystals on chitosan membranes were prepared for culture of human mesenchymal stem cells (hMSCs) in vitro. A series of aqueous CaP suspensions with different concentrations were mixed with chitosan solution and chitosan/calcium phosphate (C/CaP) films were fabricated by the solvent-casting method. With different weight ratios of CaP in chitosan solution, the various surface characteristics of nano-amorphous (C/CaP 0.1), nano-crystalline (C/CaP 0.5) and micro-particle (C/CaP 2) CaP compounds were examined by scanning electron microscopy and electron dispersion spectroscopy. X-ray diffraction on micro-particles of CaP indicated the formation of crystalline hydroxyapatite. The behavior of hMSCs, including proliferation, cell spreading and osteogenic differentiation, was studied on the C/CaP films. In basal culture medium, the incorporation of CaP into chitosan films could promote the proliferation of hMSCs. The C/CaP 0.5 film with connected CaP nano-crystals had better cellular viability. The fluorescence microscope images at 14 days of culture revealed extensive networks of F-actin filaments of hMSCs on chitosan, C/CaP 0.1 and C/CaP 0.5 films. The cellular morphology on C/CaP 2 film with discrete CaP micro-particles was partly restrained. In osteogenic medium, the alkaline phosphatase (ALP) activity of hMSCs increased and showed the process of osteogenic differentiation. The ALP levels on C/CaP 2 film were higher than those on C/CaP 0.1 and C/CaP 0.5 films. These results demonstrated that the crystallinity and topography of CaP on chitosan membranes could modulate the behaviors of cultured hMSCs in vitro.  相似文献   

17.
Integrins provide the primary link between mesenchymal stem cells (MSCs) and their surrounding extracellular matrix (ECM), with different integrin pairs having specificity for different ECM molecules or peptide sequences contained within them. It is widely acknowledged that the type of ECM present can influence MSC differentiation; however, it is yet to be determined how specific integrin-ECM interactions may alter this or how they change during differentiation. We determined that human bone marrow-derived mesenchymal stem cells (hMSCs) express a broad range of integrins in their undifferentiated state and show a dramatic, but transient, increase in the level of α5 integrin on day 7 of osteogenesis and an increase in α6 integrin expression throughout adipogenesis. We used a nonfouling polystyrene-block-poly(ethylene oxide)-copolymer (PS-PEO) surface to present short peptides with defined integrin-binding capabilities (RGD, IKVAV, YIGSR, and RETTAWA) to hMSCs and investigate the effects of such specific integrin-ECM contacts on differentiation. hMSCs cultured on these peptides displayed different morphologies and had varying abilities to differentiate along the osteogenic and adipogenic lineages. The peptide sequences most conducive to differentiation (IKVAV for osteogenesis and RETTAWA and IKVAV for adipogenesis) were not necessarily those that were bound by those integrin subunits seen to increase during differentiation. Additionally, we also determined that presentation of RGD, which is bound by multiple integrins, was required to support long-term viability of hMSCs. Overall we confirm that integrin-ECM contacts change throughout hMSC differentiation and show that surfaces presenting defined peptide sequences can be used to target specific integrins and ultimately influence hMSC differentiation. This platform also provides information for the development of biomaterials capable of directing hMSC differentiation for use in tissue engineering therapies.  相似文献   

18.
Mesenchymal stem cells are pluripotent cells from bone marrow, which can be differentiated into the osteogenic, chondrogenic, and adipogenic lineages in vitro and are a source of cells in bone and cartilage tissue engineering. An improvement in current tissue-engineering protocols requires more detailed insight into the molecular cues that regulate the distinct steps of osteochondral differentiation. Because Wnt signaling has been widely implicated in mesenchymal differentiation, we analyzed the role of Wnt signaling in human mesenchymal stem cell (hMSC) biology by stimulation of the pathway with lithium chloride and Wnt3A-conditioned medium. We demonstrate a role for low levels of Wnt signaling in proliferation of uncommitted hMSCs and confirm that Wnt signaling controls osteoprogenitor proliferation. On the other hand, at high Wnt levels we observed a block in adipogenic differentiation and an increase in the expression of alkaline phosphatase, suggesting a role in the initiation of osteogenesis. The results of this study suggest that bone tissue engineering could benefit from the activation of critical levels of Wnt signaling at defined stages of differentiation. Moreover, our data suggest that hMSCs provide a valid in vitro model to study the role of Wnt signaling in mesenchymal biology.  相似文献   

19.
Xu C  Su P  Chen X  Meng Y  Yu W  Xiang AP  Wang Y 《Biomaterials》2011,32(4):1051-1058
A novel biomimetic composite scaffold Bioglass-Collagen-Phosphatidylserine (BG-COL-PS) was fabricated with a freeze-drying technique. The macrostructure and morphology as well as mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the BG-COL-PS scaffolds exhibited interconnected porous structures with pore sizes of several microns up to about 300 μm. The scaffolds have a porosity of 75.40% and the corresponding compressive strength of 1.5469 Mpa. Rat mesenchymal stem cells (rMSCs) were seeded on BG-COL-PS or BG-COL scaffolds and cultured for 21 days in vitro. Based on the results of SEM, dsDNA content, alkaline phosphatase (ALP) activity, osteogenic gene expression analysis and alizarin red staining, the responses of MSCs to the scaffold exhibited a higher degree of attachment, growth as well as osteogenic differentiation than those on BG-COL scaffolds in vitro. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both pure BG-COL-PS scaffolds and MSC/scaffold constructs were implanted in rat femurs defects for 6 weeks and studied histologically and radiographically. The in vivo results showed that BG-COL-PS composite scaffolds exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, the BG-COL-PS/MSC constructs dramatically enhanced the efficiency of new bone formation than pure BG-COL-PS scaffolds or BG-COL/MSC constructs. All these results demonstrate the usefulness of PS composited BG-COL-PS scaffolds for inducing enhanced bone formation. The BG-COL-PS scaffolds fulfill the basic requirements of bone tissue engineering scaffold and have the potential to be applied in orthopedic and reconstructive surgery.  相似文献   

20.
The response of osteoprogenitors to calcium (Ca(2+)) is of primary interest for both normal bone homeostasis and the clinical field of bone regeneration. The latter makes use of calcium phosphate-based bone void fillers to heal bone defects, but it is currently not known how Ca(2+) released from these ceramic materials influences cells in situ. Here, we have created an in vitro environment with high extracellular Ca(2+) concentration and investigated the response of human bone marrow-derived mesenchymal stromal cells (hMSCs) to it. Ca(2+) enhanced proliferation and morphological changes in hMSCs. Moreover, the expression of osteogenic genes is highly increased. A 3-fold up-regulation of BMP-2 is observed after only 6h and pharmaceutical interference with a number of proteins involved in Ca(2+) sensing showed that not the calcium sensing receptor, but rather type L voltage-gated calcium channels are involved in mediating the signaling pathway between extracellular Ca(2+) and BMP-2 expression. MEK1/2 activity is essential for the effect of Ca(2+) and using microarray analysis, we have identified c-Fos as an early Ca(2+) response gene. We have demonstrated that hMSC osteogenesis can be induced via extracellular Ca(2+), a simple and economic way of priming hMSCs for bone tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号