首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Several investigators have suggested that the pathological progression of Alzheimer's disease appears to recapitulate the developmental maturation pattern, a process termed retrogenesis. Diffusion tensor imaging was used to test the hypothesis that the microstructural integrity of superior frontal and temporal white matter, one of the last regions to mature, would be reduced in vivo in early Alzheimer's disease. Five consecutive slices, from the orbitofrontal to periventricular frontal regions, as well as temporal and corpus callosal white matter regions, were sampled. Fractional anisotropy, mean diffusivity, axial diffusion, and radial diffusion of 10 patients with early Alzheimer's disease and 10 age-similar healthy control subjects were compared. Patients with Alzheimer's disease were found to have significantly reduced fractional anisotropy, increased mean diffusivity, and increased radial diffusion in superior frontal white matter. These data suggest that the integrity of periventricular frontal white matter rather than orbitofrontal white matter appears to be altered in early Alzheimer's disease and that the white matter abnormalities involve compromised myelin, consistent with the retrogenesis theory.  相似文献   

2.
Chan W‐Y, Yang G‐L, Chia M‐Y, Woon P‐S, Lee J, Keefe R, Sitoh Y‐Y, Nowinski WL, Sim K. Cortical and subcortical white matter abnormalities in adults with remitted first‐episode mania revealed by Tract‐Based Spatial Statistics.
Bipolar Disord 2010: 12: 383–389. © 2010 The Authors. Journal compilation © 2010 John Wiley & Sons A/S. Objectives: Abnormalities of brain white matter have been noted in structural magnetic resonance imaging and diffusion tensor imaging (DTI) studies of bipolar disorder, but there are fewer investigations specifically examining white matter integrity early in the course of illness. In this study, we employed DTI to elucidate white matter changes in adult patients with remitted first‐episode mania and hypothesized that first‐episode mania was associated with decreased fractional anisotropy in cortical (frontal) and subcortical (thalamus, striatum) white matter as well as white matter tracts (cingulum, corpus callosum). Methods: Diffusion tensor images were acquired from 16 patients with remitted first‐episode mania and 16 healthy controls matched for age, gender, handedness, and years of education. Fractional anisotropy and radial and axial diffusivities were analyzed using Tract‐Based Spatial Statistics. Results: Patients had lower fractional anisotropy and higher radial diffusivity in the left anterior frontal white matter, right posterior thalamic radiation, left cingulum, and bilateral sagittal striatum. In addition, increased radial diffusivity was found in the left corpus callosum. Conclusion: Our findings highlighted that white matter abnormalities were present by the time of remission of first‐episode mania. The widespread occurrence of these white matter abnormalities both in first‐episode mania and chronic bipolar disorder suggested that disruption of white matter cortical‐subcortical networks as well as projection, associative, and commissural tracts is a hallmark of the illness.  相似文献   

3.
Abnormalities in fronto-limbic-striatal white matter (WM) have been reported in bipolar disorder (BD), but results have been inconsistent across studies. Furthermore, there have been no detailed investigations as to whether acute mood states contribute to microstructural changes in WM tracts. In order to compare fiber density and structural integrity within WM tracts between BD depression and remission, whole-brain fractional anisotropy (FA) and mean diffusivity (MD) were assessed in 37 bipolar I disorder (BD-I) patients (16 depressed and 21 remitted), and 26 healthy individuals with diffusion tensor imaging. Significantly decreased FA and increased MD in bilateral prefronto-limbic-striatal white matter and right inferior fronto-occipital, superior and inferior longitudinal fasciculi were shown in all BD-I patients versus controls, as well as in depressed BD-I patients compared to both controls and remitted BD-I patients. Depressed BD-I patients also exhibited increased FA in the ventromedial prefrontal cortex. Remitted BD-I patients did not differ from controls in FA or MD. These findings suggest that BD-I depression may be associated with acute microstructural WM changes.  相似文献   

4.
Objectives:  In bipolar disorder (BD), dysregulation of mood may result from white matter abnormalities that disrupt fronto-subcortical circuits. In this study, we explore such abnormalities using diffusion tensor imaging (DTI), an imaging technique capable of detecting subtle changes not visible with conventional magnetic resonance imaging (MRI), and voxel-based analysis.
Methods:  Thirty-six patients with BD, all but two receiving antidepressants or mood stabilizers, and 28 healthy controls matched for age and gender were studied. Diffusion-weighted echoplanar images (DW-EPI) were obtained using a 1.5T scanner. Voxel-based analysis was performed using SPM 2. Differences between the groups in mean diffusivity and fractional anisotropy (FA) were explored.
Results:  In the patient group, mean diffusivity was increased in the right posterior frontal and bilateral prefrontal white matter, while FA was increased in the inferior, middle temporal and middle occipital regions. The areas of increased mean diffusivity overlapped with those previously found to be abnormal using volumetric MRI and magnetization transfer imaging (MTI) in the same group of patients.
Conclusions:  White matter abnormalities, predominantly in the fronto-temporal regions, can be detected in patients with BD using DTI. The neuropathology of these abnormalities is uncertain, but neuronal and axonal loss, myelin abnormalities and alterations in axonal packing density are likely to be relevant. The neuroprotective effects of some antidepressants and mood stabilizers make it unlikely that medication effects could explain the abnormalities described here, although minor effects cannot be excluded.  相似文献   

5.

Background

Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear.

Methods

We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI).

Results

We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls.

Limitations

The major limitation of our study is the small number of patients with bipolar disorder.

Conclusion

Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.  相似文献   

6.
OBJECTIVE: The purpose of this study was test the hypothesis that abnormalities of inferior frontal white matter are related to the negative symptoms of schizophrenia. METHOD: Fractional anisotropy of white matter tracts in the prefrontal area of 10 schizophrenic patients was determined by diffusion tensor imaging. Patients were also assessed for severity of negative symptoms by using the Schedule for the Assessment of Negative Symptoms (SANS). RESULTS: Inferior frontal white matter fractional anisotropy was significantly inversely correlated with the SANS global ratings of negative symptoms. CONCLUSIONS: These data, while preliminary, suggest that impaired white matter integrity in the inferior frontal region may be associated with the severity of negative symptoms in schizophrenia.  相似文献   

7.
BACKGROUND: Convergent evidence implicates white matter abnormalities in bipolar disorder. The cingulum is an important candidate structure for study in bipolar disorder as it provides substantial white matter connections within the corticolimbic neural system that subserves emotional regulation involved in the disorder. AIMS: To test the hypothesis that bipolar disorder is associated with abnormal white matter integrity in the cingulum. METHOD: Fractional anisotropy in the anterior and posterior cingulum was compared between 42 participants with bipolar disorder and 42 healthy participants using diffusion tensor imaging. RESULTS: Fractional anisotropy was significantly decreased in the anterior cingulum in the bipolar disorder group compared with the healthy group (P=0.003); however, fractional anisotropy in the posterior cingulum did not differ significantly between groups. CONCLUSIONS: Our findings demonstrate abnormalities in the structural integrity of the anterior cingulum in bipolar disorder. They extend evidence that supports involvement of the neural system comprising the anterior cingulate cortex and its corticolimbic gray matter connection sites in bipolar disorder to implicate abnormalities in the white matter connections within the system provided by the cingulum.  相似文献   

8.
OBJECTIVES: An increased incidence in white matter abnormalities is among the most frequently reported brain change in patients with bipolar disorder. The objective of the present study was to examine white matter tract integrity, using diffusion tensor imaging (DTI), in bipolar patients and healthy comparison subjects. METHODS: Eleven DSM-IV bipolar I patients and 10 healthy age- and sex-matched controls were studied. DTI data were acquired on a 1.5 Tesla scanner. Fractional anisotropy (FA) and diffusivity (trace) were determined from axial images using region of interest (ROI) analyses. The ROIs were manually placed in the midline and forward projecting arms of the genu (anterior) and the midline of the splenium (posterior) of the corpus callosum. RESULTS: Bipolar patients had significantly higher FA in the midline of the genu compared with healthy controls. Regional white matter differences were also observed, with significantly lower FA in the genu than forward projecting regions in both groups and lower FA in the genu than the splenium in controls. CONCLUSIONS: Diffusion tensor imaging revealed significant microstructural differences in the genu, as measured by elevated FA in bipolar patients compared with healthy controls. These preliminary findings further support the hypothesis that anomalous frontal brain mechanisms may be associated with bipolar disorder.  相似文献   

9.
Diffusion tensor imaging was used to evaluate cerebral white matter in eight patients (ages 10-17), with myotonic dystrophy type 1 (3 congenital-onset, 5 juvenile-onset) compared to eight controls matched for age and sex. Four regions of interest were examined: inferior frontal, superior frontal, supracallosal, and occipital. The myotonic dystrophy group showed white matter abnormalities compared to controls in all regions. All indices of white matter integrity were abnormal: fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. With no evidence of regional variation, correlations between whole cerebrum white matter fractional anisotropy and neurocognitive functioning were examined in the patients. Strong correlations were observed between whole cerebrum fractional anisotropy and full-scale intelligence and a measure of executive functioning. Results indicate that significant white matter abnormality is characteristic of young patients with myotonic dystrophy type 1 and that the white matter abnormality seen with neuroimaging has implications for cognitive functioning.  相似文献   

10.
OBJECTIVE: Onset of psychosis after the age of 60 may be associated with structural abnormalities within cerebral white matter. The authors looked within white-matter tracts, which mediate connectivity of the frontal lobes, in psychotic patients for evidence of loss of fiber integrity consistent with degenerative damage. METHODS: Fourteen patients with very-late-onset schizophrenia-like psychosis and an age-matched control group underwent diffusion tensor magnetic resonance imaging. Tract maps were constructed for each subject from the imaging data, and measurements of fractional anisotropy and mean diffusivity were made within the uncinate, superior longitudinal, and inferior occipito-frontal fasciculi, and the cingulum. RESULTS: There were no significant differences in fractional anisotropy, a measure of the ordering of axons within fiber tracts, nor in mean diffusivity, an orientationally-averaged measure of the bulk diffusivity within each voxel, between patients and control subjects. CONCLUSION: The lack of difference in fractional anisotropy and mean diffusivity measures between patients and controls argues against the presence of structural abnormalities within these tracts and the notion that a focal white-matter abnormality within the tracts investigated underpins the onset of psychosis.  相似文献   

11.
OBJECTIVE: The aim of this study was to explore the microstructural integrity of whole-brain white matter by diffusion tensor imaging in first-episode, treatment-naive young adults with major depressive disorder. METHOD: Diffusion tensor imaging scans were obtained from 14 first-episode, treatment-naive young adult patients with major depressive disorder and 14 healthy comparison subjects. A voxel-based method was used to analyze the scans. RESULTS: The patient group exhibited significantly lower fractional anisotropy values than healthy comparison subjects in the white matter of the right middle frontal gyrus, the left lateral occipitotemporal gyrus, and the subgyral and angular gyri of the right parietal lobe. There were no regions of significantly higher fractional anisotropy values in patients compared with healthy comparison subjects. CONCLUSIONS: These findings suggest that abnormalities of brain white matter may be present early in the course of major depressive disorder. They also support the idea that white matter lesions may disrupt the neural circuits involved in mood regulation and thus contribute to the neuropathology of major depressive disorder.  相似文献   

12.
We used a diffusion tensor imaging-based whole-brain tissue segmentation to characterize age-related changes in (a) whole-brain grey matter, white matter, and cerebrospinal fluid relative to intracranial volume and (b) the corresponding brain tissue microstructure using measures of diffusion tensor anisotropy and mean diffusivity. The sample, a healthy cohort of 119 right-handed males and females aged 7-68 years. Our results demonstrate that white matter and grey matter volumes and their corresponding diffusion tensor anisotropy and mean diffusivity follow nonlinear trajectories with advancing age. In contrast, cerebrospinal fluid volume increases linearly with age.  相似文献   

13.
OBJECTIVE: Disruptions in connectivity between the frontal and temporal lobes may explain some of the symptoms observed in schizophrenia. Conventional magnetic resonance imaging (MRI) studies, however, have not shown compelling evidence for white matter abnormalities, because white matter fiber tracts cannot be visualized by conventional MRI. Diffusion tensor imaging is a relatively new technique that can detect subtle white matter abnormalities in vivo by assessing the degree to which directionally organized fibers have lost their normal integrity. The first three diffusion tensor imaging studies in schizophrenia showed lower anisotropic diffusion, relative to comparison subjects, in whole-brain white matter, prefrontal and temporal white matter, and the corpus callosum, respectively. Here the authors focus on fiber tracts forming temporal-frontal connections. METHOD: Anisotropic diffusion was assessed in the uncinate fasciculus, the most prominent white matter tract connecting temporal and frontal brain regions, in 15 patients with chronic schizophrenia and 18 normal comparison subjects. A 1.5-T GE Echospeed system was used to acquire 4-mm-thick coronal line-scan diffusion tensor images. Maps of the fractional anisotropy were generated to quantify the water diffusion within the uncinate fasciculus. RESULTS: Findings revealed a group-by-side interaction for fractional anisotropy and for uncinate fasciculus area, derived from automatic segmentation. The patients with schizophrenia showed a lack of normal left-greater-than-right asymmetry seen in the comparison subjects. CONCLUSIONS: These findings demonstrate the importance of investigating white matter tracts in vivo in schizophrenia and support the hypothesis of a disruption in the normal pattern of connectivity between temporal and frontal brain regions in schizophrenia.  相似文献   

14.
OBJECTIVE: Previous diffusion tensor imaging findings have supported suggestions that bipolar disorder is characterized by subtle white matter changes. The chronic nature of the study population, however, has limited interpretation of these findings. In this study the authors utilized diffusion tensor imaging to study white matter tracts of adolescents in their first episode of mania to address whether abnormalities are present in early bipolar disorder. METHOD: Eleven medication-naive adolescents in their first episode of mania and 17 healthy subjects underwent diffusion tensor imaging scans. Fractional anisotropy and trace apparent diffusion coefficients of prefrontal and posterior regions of interest were compared between groups. RESULTS: Bipolar adolescents showed significantly decreased fractional anisotropy only in superior-frontal white matter tracts. Trace apparent diffusion coefficients did not significantly differ in any regions examined. CONCLUSIONS: These findings suggest that prefrontal white matter abnormalities are present early in bipolar disorder and may consist largely of axonal disorganization. The presence of changes in young first-episode patients also suggests that white matter pathology may represent an early marker of bipolar disorder.  相似文献   

15.
目的:应用磁共振弥散张量成像技术(DTI)研究阿尔茨海默病(AD)与轻度认知障碍患者(MCI)脑白质损伤情况。方法:对21例AD患者、15例MCI患者和20名健康志愿者进行脑部DTI扫描后,测量双脑区感兴趣区的各向异性分数值(FA)且进行比较。结果:AD患者额叶、顶叶、颞叶和胼胝体的FA值与MCI组和对照组均存在显著性差异,MCI患者仅颞叶和胼胝体的FA值与对照组均存在显著性差异。结论:AD患者与MCI患者存在脑白质结构的差异,DTI技术能够在一定程度上提供MCI的早期诊断指标。  相似文献   

16.
OBJECTIVE: To quantitatively investigate water diffusion changes in normal-appearing white matter (NAWM) and gray matter in patients with MS, and to evaluate whether these changes are correlated with clinical disability and disease duration. BACKGROUND: Diffusion tensor imaging provides quantitative information about the magnitude and directionality (anisotropy) of water diffusion in vivo and detects pathologic changes in MS brain tissue. METHODS: Diffusion tensor imaging was performed in 39 patients with MS and in 21 age-matched control subjects. Quantitative indices, including fractional anisotropy, volume ratio, and mean diffusivity, were obtained in 30 regions of interest located in normal-appearing basal ganglia, cerebellar gray matter, and supratentorial and infratentorial NAWM. RESULTS: Patients with MS showed significantly reduced anisotropy and a trend toward increased diffusivity in the infratentorial and supratentorial NAWM, and significantly increased anisotropy in the basal ganglia. In all patients with MS, both fractional anisotropy and mean diffusivity in the cerebral peduncles were inversely correlated with the Expanded Disability Status Scale and pyramidal functional scores. In patients with relapsing-remitting MS, there was a strong correlation between Expanded Disability Status Scale score and fractional anisotropy in both supratentorial and infratentorial NAWM. In primary and secondary progressive MS, disease duration correlated strongly with mean diffusivity in infratentorial NAWM and fractional anisotropy in the cerebral peduncles, respectively. CONCLUSION: The most striking finding of decreased fractional anisotropy in supratentorial and infratentorial NAWM and increased fractional anisotropy in basal ganglia may result from axonal degeneration due to fiber transection in remote focal lesions. Diffusion tensor imaging indices, in particular fractional anisotropy, appear sensitive to structural damage in NAWM that is associated with disability and progression in MS.  相似文献   

17.
OBJECTIVE: Cognitive models propose that the symptoms and psychological impairments associated with schizophrenia arise as a consequence of impaired communication between brain regions, especially the prefrontal cortex and the temporal and parietal lobes. Functional imaging and electrophysiological data have provided evidence of functional dysconnectivity, but it is unclear whether this reflects an underlying problem with anatomical connectivity. This study used diffusion tensor imaging to examine the integrity of the major white matter fasciculi, which connects the frontal and temporal-parietal cortices, and the corpus callosum in patients with schizophrenia. METHOD: A 1.5-T magnetic resonance scanner was used to acquire diffusion tensor images giving whole brain coverage at an isotropic 2.5-mm voxel size. Fractional anisotropy was measured in 33 patients with schizophrenia and 40 healthy comparison subjects with an automated voxel-based method of analysis. RESULTS: There was reduced fractional anisotropy in patients with schizophrenia in regions corresponding to the superior longitudinal fasciculi bilaterally and in the genu of the corpus callosum. However, within the patient group, the propensity to experience auditory hallucinations was associated with relatively increased fractional anisotropy in superior longitudinal fasciculi and in the anterior cingulum. CONCLUSIONS: Schizophrenia is associated with altered white matter integrity in the tracts connecting the frontal cortex with the temporal and parietal cortices and with the contralateral frontal and temporal lobes. The severity of these changes may vary with the pattern of symptoms associated with the disorder.  相似文献   

18.
Hao Y  Liu Z  Jiang T  Gong G  Liu H  Tan L  Kuang F  Xu L  Yi Y  Zhang Z 《Neuroreport》2006,17(1):23-26
Diffusion tensor imaging studies in schizophrenia have demonstrated lower diffusion anisotropy within white matter that provides information about brain white matter integrity. We have examined whether white matter is abnormal in first-episode schizophrenia by using diffusion tensor imaging. Twenty-one schizophrenic patients and healthy controls underwent diffusion tensor imaging scans that analyzed by using a rigorous voxel-based approach. We found that fractional anisotropy in white matter of the patients was lower than that in controls at the cerebral peduncle, frontal regions, inferior temporal gyrus, medial parietal lobes, hippocampal gyrus, insula, right anterior cingulum bundle and right corona radiata. These results suggested that white matter integrity of the whole brain was disrupted in early illness onset of schizophrenia.  相似文献   

19.
Concussion is among the least understood neurologic injuries. The impact of concussion on the adolescent brain remains largely unknown. This study sought to establish short-term changes in white-matter integrity after sports-related concussion in adolescents, and examine the association between changes in white-matter integrity and a clinical measure of concussion. Twelve adolescents, aged 14-17 years with a sports-related concussion within 2 months, and 10 age-matched adolescents with no history of concussion were evaluated with the Sports Concussion Assessment Tool 2 and diffusion tensor imaging. Two measures compared the two groups: fractional anisotropy and mean diffusivity. Whole-brain fractional anisotropy values significantly increased (F(1,40) = 6.29, P = 0.010), and mean diffusivity values decreased (F(1,40) = 4.75, P = 0.036), in concussed athletes compared with control participants. Total scores on the Sports Concussion Assessment Tool 2 were associated with whole-brain fractional anisotropy. Mean diffusivity values with lower scores were associated with higher fractional anisotropy (R2 = 0.25, P = 0.017) and lower mean diffusivity (R2 = 0.20, P = 0.038). We provide evidence of structural changes in the integrity of white matter in adolescent athletes after sports-related concussion.  相似文献   

20.
精神分裂症患者全脑白质纤维弥散张量成像的初步研究   总被引:1,自引:0,他引:1  
目的运用能够提示白质纤维(white matter,WM)完整性的弥散张量成像(diffusion tensor imaging,DTI)技术,探讨精神分裂症患者全脑白质纤维是否受到损害。方法对21例精神分裂症患者(患者组)和21名健康人(对照组)进行全脑DTI扫描,用SPM2(Statistical Parametric Maps,SPM)软件对图像进行处理,采用以像素为基础的分析方法(voxel-based analysis,VBA)对两组的分数各向异性(fractional anisotropy,FA)值进行组间比较。结果患者组下列脑区的FA值显著低于对照组(P<0·001):左侧额眶区和右侧额中回的白质、双侧颞下回白质、双侧顶叶内侧白质、右侧前扣带、双侧海马、双侧大脑脚、双侧岛叶、右侧放射冠和右侧小脑上脚。结论精神分裂症多个部位脑白质纤维的完整性受到破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号