首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we compared properties of the neuraminidase (NA) of the H1N1/2009 pandemic virus (H1N1pdm) and N1 NAs of other influenza viruses. The H1N1pdm NA was more active than NAs of seasonal H1N1 viruses, hydrolyzed Neu5Acα2-3Gal linkage as efficiently as did avian viruses and cleaved Neu5Acα2-6Gal linkage as efficiently as classical swine viruses. To assess the functional balance between heterologous NAs and pandemic virus HA, we generated four recombinant viruses that shared seven genes of A/Hamburg/5/09 and contained the NA gene from representative avian, swine and human viruses. The viruses harboring NA from avian, Eurasian avian-like swine and seasonal human viruses eluted more slowly from red blood cells, were more sensitive to neutralization by human airway mucins, and replicated less efficiently in differentiated human tracheo-bronchial epithelial cultures as compared with the viruses containing the NA of H1N1pdm and the NA of the North American classical swine virus lineage. Our data suggest that functional properties of the NA of H1N1pdm could be closer to those of classical swine viruses than to those of avian, avian-like swine and seasonal human viruses.  相似文献   

2.
目的 分析2009-2017年烟台地区甲型(H1N1)pdm09流感病毒流行情况及神经氨酸酶(neuraminidase,NA)基因进化特征。方法 收集2009年8月~2017年8月烟台地区两家哨点医院流感样病例咽试子标本10 236份,狗肾细胞(Madin-Darby canine kidney cell,MDCK)分离流感病毒,血凝抑制实验进行病毒分型。选取甲型(H1N1)pdm09流感毒株43株,扩增NA基因全序列并测序,应用分子生物学软件分析其遗传变异特征。结果 系统发生分析表明大部分烟台分离株属于2、7、6C、6B.1和6B.2基因型;NA蛋白分子多个氨基酸位点发生变异,与疫苗株相比,6、7基因型增加了44位糖基化位点;6B.1和6B.2基因亚型,减少了386位糖基化位点;运用固定效应似然比模型和内部固定效应似然比模型发现34和386两个正向选择压力位点,NA蛋白酶活性中心位点及周围辅助位点均未发生变异。结论 2009-2017年烟台地区甲型(H1N1)pdm09流感病毒NA基因持续发生变异,仍对神经氨酸酶抑制剂敏感,未来仍应加强流感流行状况和病原基因特征监测。  相似文献   

3.
Influenza virological surveillance is an essential tool for early detection of novel genetic variants of epidemiologic and clinical significance. The aim of this study was to determine the antigenic and molecular characteristics of influenza viruses circulating in Bulgaria during the 2015/2016 season. The season was characterized by dominant circulation of A(H1N1)pdm09 viruses, accounting for 66% of detected influenza viruses, followed by B/Victoria-lineage viruses (24%) and A(H3N2) viruses (10%). All sequenced influenza A(H1N1)pdm09, A(H3N2) and B/Victoria-lineage viruses belonged to the 6B.1, 3C.2a and 1A genetic groups, respectively. Amino acid analysis of 57 A(H1N1)pdm09 isolates revealed the presence of 16 changes in hemagglutinin (HA) compared to the vaccine virus, five of which occurred in four antigenic sites, together with 16 changes in neuraminidase (NA) and a number of substitutions in proteins MP, NP, NS and PB2. Despite the many amino acid substitutions, A(H1N1)pdm09 viruses remained antigenically closely related to A/California/7/2009 vaccine virus. Bulgarian A(H3N2) strains (subclade 3C.2a) showed changes at 11 HA positions four of which were located in antigenic sites A and B, together with 6 positions in NA, compared to the subclade 3C.3a vaccine virus. They contained unique HA1 substitutions N171K, S312R and HA2 substitutions I77V and G155E compared to Bulgarian 3C.2a viruses of the previous season. All 20 B/Victoria-lineage viruses sequenced harboured two substitutions in the antigenic 120-loop region of HA, and 5 changes in NA, compared to the B/Brisbane/60/2008 vaccine virus. The results of this study reaffirm the continuous genetic variability of circulating seasonal influenza viruses and the need for continued systematic antigenic and molecular surveillance.  相似文献   

4.
目的 了解2012-2018年青岛市人群A型(H1N1)pdm09流感病毒奥司他韦耐药株基因特征。方法 收集2012年4月-2018年3月间青岛市A(H1N1)pdm09毒株397份,逆转录聚合酶链反应(RT-PCR)扩增神经氨酸酶(Neuraminidase,NA)和血凝素(Hemagglutinin,HA)基因全长,序列测定后进行耐药位点和氨基酸变异及进化分析。结果 5株发生了H275Y突变,为奥司他韦耐药株;另有4株S247N突变,可能为奥司他韦耐药株。2012-2018年H275Y突变株检出率依次为2.8 %、2.0 %、0.0 %、1.1 %、0.0 %和0.7 %。NA和HA进化树显示,2012-2013年青岛H275Y突变株与美国耐药株A/Tennessee/03/2013更接近,2013-2014年青岛H275Y突变株与国内株和日本札幌耐药株更接近,这两个年度耐药株的毒株起源可能有所不同。突变株在酶活性位点、抗原决定簇、受体结合位点及其他功能位点(如HA位点D222、Q223和NA位点V241I、N369K和N386K)的转变与野生敏感株一致。结论 青岛市A型(H1N1)pdm09流感病毒奥司他韦耐药株明显增加且流行起源不同,但并未取得比野生株更强的流行能力。奥司他韦仍可作为流感预防和治疗的有效手段。  相似文献   

5.
It is desirable for influenza vaccine virus strains to have phenotypes that include good growth and hemagglutinin (HA) protein yield. The quality of these characteristics varies among the vaccine viruses and is usually due to multigenic effects. Many influenza A virus vaccine viruses are made as reassortants of the high yield virus A/Puerto Rico/8/34 (PR/8) and a circulating seasonal virus. Co-infection of eggs with the two viruses, and selection of reassortants with the HA and neuraminidase (NA) segments from the seasonal virus, can result in viruses that contain a mixture of internal genes derived from both the high yield virus and the circulating virus. Segment 2 (PB1), which encodes the RNA-dependent RNA polymerase, frequently cosegregates with the seasonal HA and NA segments. We asked whether mutations based on the seasonal PB1 genes could improve vaccine virus strains. Here we report that mutations to the PR/8 PB1 gene, based on differences observed between seasonal and PR/8 PB1 genes, accelerate egg and cell culture based replication for a reassortant virus containing HA and NA segments from the low yield A/Wyoming/03/2003 (H3N2) vaccine virus.  相似文献   

6.
In the present study, three mouse-adapted variants of influenza A(H1N1)pdm09 virus were obtained by lung-to-lung passages of BALB/c, C57BL/6z and CD1 mice. The significantly increased virulence and pathogenicity of all of the mouse-adapted variants induced 100% mortality in the adapted mice. Genetic analysis indicated that the increased virulence of all of the mouse-adapted variants reflected the incremental acquisition of several mutations in PB2, PB1, HA, NP, NA, and NS2 proteins. Identical amino acid substitutions were also detected in all of the mouse-adapted variants of A(H1N1)pdm09 virus, including PB2 (K251R), PB1 (V652A), NP (I353V), NA (I106V, N248D) and NS1 (G159E). Apparently, influenza A(H1N1)pdm09 virus easily adapted to the host after serial passages in the lungs, inducing 100% lethality in the last experimental group. However, cross-challenge revealed that not all adapted variants are pathogenic for different laboratory mice. Such important results should be considered when using the influenza mice model.  相似文献   

7.
目的 了解宁夏2018-2019流感监测年度流感病毒病原学检测情况,分析甲型H1N1流感病毒血凝素(HA)基因特征。方法 采用real time RT-PCR方法对流感监测哨点医院采集的流感样病例(ILI)标本进行核酸检测;对阳性标本进行毒株分离;提取甲型H1N1毒株的RNA,采用RT-PCR方法扩增HA片段并测序,利用生物信息软件对测序结果进行比对分析。结果 宁夏流感网络实验室检测咽拭子标本共5214份,核酸检测阳性数为760份,其中甲型H1N1阳性数为485份,占总阳性数的63.82%,分离出甲型H1N1毒株 161株。宁夏分离毒株与疫苗株A/Califaoria/07/2009不在同一进化分支,同源性为92.6%~96.3%;与疫苗株A/Michigan/45/2015(H1N1)为同一进化分支,同源性为96.6%~98.1%。与疫苗株A/Califaoria/07/2009比较,抗原位点、受体结合位点及其他位点均有变异,除毒株 A/Ningxia_Xixia/SWL1176/2019(H1N1)第222位氨基酸发生D222G变异外,其他甲型H1N1流感毒株均未发生D222G变异。所有毒株增加糖基化位点162NQT,个别毒株糖基化位点增加2~3个。结论 宁夏2018 -2019年度流感优势毒株为甲型H1N1毒株。序列分析表明甲型H1N1病毒发生了不同程度的变异,在抗原特异性、毒力和感染性上有可能已经发生变化,需要及时更换疫苗株成分。  相似文献   

8.
  目的   了解2014-2019年青岛市人群A型流感病毒(influenza A virus, IAV)流行病学和遗传特征。   方法   提取9 807份流感样病例咽拭子标本的病毒RNA, 采用多重实时反转录PCR方法鉴定分型; 采用一步法反转录PCR扩增IAV血凝素(hemagglutinin, HA)和神经氨酸酶(neuraminidase, NA)基因, 并进行序列测定和基因分析。   结果   2014-2019年青岛市流感病毒流行具有北半球典型季节性流感特征。夏季小量流行主要是H3N2。青岛市IAV中H1N1pdm09和H3N2分别占57.6%和42.4%, 并呈现交替流行。基因群分属于6B和3C。两者HA和NA基因进化都处在净化选择下, 但抗原进化可能具有不同的进化模式。与2009年毒株相比, 2019年青岛市H1N1pdm09和H3N2的HA分别已发生21个和30个氨基酸替换, 均主要发生在头部, 分别包含5个和18个抗原位点。H1N1pdm09检测到两株神经氨酸酶抑制剂抗性突变, 1株为H275Y突变, 另1株为S247N突变; H3N2中未发现NAI抗性突变。   结论   H1N1pdm09和H3N2是2014-2019年青岛市季节性IAV中的主要组分, 进化迅速。加强流感监测和研究十分必要, 流感疫苗株需要及时更新。  相似文献   

9.
目的 了解镇江地区甲型H1N1流感病毒流行和变异特点。方法 收集2014-2016年镇江地区哨点医院流感样病例标本,进行核酸检测和病毒分离。在病毒流行期按月随机抽取13株甲型H1N1毒株,设计特异性的引物扩增血凝素(hemagglutinin,HA)、神经氨酸酶(neuraminidase,NA)基因,进行测序并分析其遗传进化特征。结果 13株分离株与疫苗株A/California/07/2009的HA基因核苷酸和氨基酸的同源性分别为97.3%~100.0%和96.6%~100.0%;NA基因核苷酸和氨基酸同源性分别为95.6%~97.5%和93.8%~96.6%。系统进化分析表明,13株病毒HA和NA基因分属于不同的进化谱系。分子特征表现为12株HA氨基酸序列均发生了抗原位点Sa区K173Q突变,1株同时发生了Sa区K181E突变;3株还发生了Ca1区V183I突变。受体结合位点和糖基化位点的氨基酸序列均未发生变异。结论 2014-2016年镇江地区甲型H1N1流感病毒与疫苗株相比,其HA、NA基因出现了一定程度的变异,但是抗原性并未发生改变,需进一步加强监测。  相似文献   

10.
《Vaccine》2017,35(10):1424-1430
In 2013, a novel avian-origin H7N9 influenza A virus causing severe lower respiratory tract disease in humans emerged in China, with continued sporadic cases. An effective vaccine is needed for this virus in case it acquires transmissibility among humans; however, PR8-based A/Anhui/1/2013 (Anhui/1, H7N9), a WHO-recommended H7N9 candidate vaccine virus (CVV) for vaccine production, does not replicate well in chicken eggs, posing an obstacle to egg-based vaccine production. To address this issue, we explored the possibility that PR8’s hemagglutinin (HA) and neuraminidase (NA) packaging signals mediate improvement of Anhui/1 CVV yield in eggs. We constructed chimeric HA and NA genes having the coding region of Anhui/1 HA and NA flanked by the 5′ and 3′ packaging signals of PR8’s HA and NA, respectively. The growth of CVVs containing the chimeric HA was not affected, but that of those containing the chimeric NA gene grew in embryonated chicken eggs with a more than 2-fold higher titer than that of WT CVV. Upon 6 passages in eggs further yield increase was achieved although this was not associated with any changes in the chimeric NA gene. The HA of the passaged CVV, did, however, exhibit egg-adaptive mutations and one of them (HA-G218E) improved CVV growth in eggs without significantly changing antigenicity. The HA-G218E substitution and a chimeric NA, thus, combine to provide an Anhui/1 CVV with properties more favorable for vaccine manufacture.  相似文献   

11.
The pandemic virus of 2009 (2009 H1N1) continues to cause illness worldwide, especially in younger age groups. The widespread H1N1 virus infection further emphasizes the need for vaccine strategies that are effective against emerging pandemic viruses and are not dependent on the limitations of traditional egg-based technology. This report describes a recombinant influenza virus-like particle (VLP) vaccine consisting of hemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of influenza A/California/04/2009 (H1N1) virus. Influenza H1N1 VLPs with a diameter of approximately 120 nm were released into the culture medium from Sf9 insect cells infected with recombinant baculovirus coexpressing HA, NA, and M1 proteins. Purified recombinant H1N1 VLPs morphologically resembled influenza virions and exhibited biological characteristics of influenza virus, including HA and NA activities. In the ferret challenge model, 2009 influenza H1N1 VLPs elicited high-titer serum hemagglutination inhibition (HI) antibodies specific for the 2009 H1N1 virus and inhibited replication of the influenza virus in the upper and lower respiratory tract tissues following A/Mexico/4482/09 (H1N1) virus challenge. Moreover, a single 15 μg dose of H1N1 VLPs resulted in complete virus clearance in the ferret lung. These results provide support for the use of recombinant influenza VLP vaccine as an effective strategy against pandemic H1N1 virus.  相似文献   

12.
Eight-plasmid system for rapid generation of influenza virus vaccines   总被引:29,自引:0,他引:29  
Hoffmann E  Krauss S  Perez D  Webby R  Webster RG 《Vaccine》2002,20(25-26):3165-3170
The antigenic variation of influenza A virus hemagglutinin (HA) and neuraminidase (NA) glycoproteins requires frequent changes in vaccine formulation. The classical method of creating influenza virus seed strains for vaccine production is to generate 6 + 2 reassortants that contain six genes from a high-yield virus, such as A/PR/8/34 (H1N1) and the HA and NA genes of the circulating strains. The techniques currently used are time-consuming because of the selection process required to isolate the reassortant virus. We generated the high-yield virus A/PR/8/34 (H1N1) entirely from eight plasmids. Its growth phenotype in embryonated chicken eggs was equivalent to that of the wild-type virus. By using this DNA-based cotransfection technique, we generated 6 + 2 reassortants that had the antigenic determinants of the influenza virus strains A/New Caledonia/20/99 (H1N1), A/Panama/2007/99 (H3N2), A/teal/HK/W312 (H6N1), and A/quail/HK/G1/97 (H9N2). Our findings demonstrate that the eight-plasmid system allows the rapid and reproducible generation of reassortant influenza A viruses for use in the manufacture of vaccines.  相似文献   

13.
Chen J  Fang F  Li X  Chang H  Chen Z 《Vaccine》2005,23(34):4322-4328
The ability of a single dose of plasmid DNA encoding neuraminidase (NA) or hemagglutinin (HA) from influenza virus A/PR/8/34 (PR8) (H1N1) to protect against homologous virus infection was examined in BALB/c mice. In the present study, mice were immunized once with 30 microg of NA or HA DNA by electroporation. Four weeks or 28 weeks after immunization, mice were challenged with a lethal dose of homologous virus and the ability of NA or HA DNA to protect the mice from influenza was evaluated. We found that a single inoculation of NA DNA could provide protection against influenza virus challenge as well as long-term protection against viral infection. Whereas, the mice immunized with a single dose of HA DNA could not be protected. In addition, neonatal mice immunized with a single dose of 30 microg of NA DNA could be provided with significant protection against viral infection.  相似文献   

14.
《Vaccine》2015,33(35):4221-4227
The yield of influenza antigen production may significantly vary between vaccine strains; for example the A/California/07/09 (H1N1)-X179A vaccine virus, prepared during 2009 influenza pandemic, presented a low antigen yield in eggs compared to other seasonal H1N1 reassortants. In this study a bi-chimeric virus expressing HA and NA genes with A/Puerto Rico/8/34 (H1N1) (PR8) and X179A domains was rescued by reverse genetics using a mixture of Vero/CHOK1 cell lines (Medina et al. [7]). The bi-chimeric virus obtained demonstrated to yield much larger amounts of HA than X179A in eggs as measured by single-radial-immunodiffusion (SRID), the reference method to quantify HA protein in influenza vaccine. Such kind of optimized virus using PR8 backbone derived chimeric glycoproteins could be used as improved seed viruses for vaccine production.  相似文献   

15.
《Vaccine》2017,35(15):1892-1897
Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates.  相似文献   

16.
17.
The ability of plasmid DNA encoding hemagglutinin (HA), neuraminidase (NA) or matrix protein (M1) from influenza virus A/PR/8/34 (PR8) (H1N1), and mixtures of these plasmid DNAs (HA + NA and HA + NA + M1) to protect against homologous or heterologous virus infection was examined in BALB/c mice. Each DNA was inoculated twice, 3 weeks apart, or four times, 2 weeks apart, at a dose of 1 microg of each component per mouse by particle-mediated DNA transfer to the epidermis (gene gun). Seven days after the last immunization, mice were challenged with a lethal homologous or heterologous virus and the ability of each DNA to protect the mice from influenza was evaluated by observing lung virus titers and survival rates. The administration of a plasmid DNA mixture of either (HA + NA) or (HA + NA + M1) provided almost complete protection against the PR8 virus challenge, and this protection was accompanied by high levels of specific antibody responses to the respective components. The degree of protection afforded in these groups is significantly higher than that in mice given either HA- or NA-expressing DNA alone, which provided only a partial protection against PR8 challenge or that in mice given M1-expressing DNA, which failed to provide any protection. In addition, both of the plasmid DNA mixtures (HA + NA) and (HA + NA + M1) showed a slight tendency to provide cross-protection against an A/Yamagata/120/86 (H1N1) virus challenge, and this was accompanied by a relatively high level of cross-reacting antibodies. Thus, there was no clear difference between the ability of the HA + NA and HA + NA + M1 plasmid DNA mixtures in providing protection against either a PR8 or heterologous virus challenge. These results suggest that in mice immunized by gene gun, a mixture of plasmid DNAs encoding HA and NA can provide the most effective protection against the virus challenge. The addition of the M -expressing plasmid DNA to this mixture does not enhance the degree of protection afforded.  相似文献   

18.
《Vaccine》2015,33(46):6314-6319
The PR8-based reverse genetics vector system is widely used to generate commercial vaccine strains, but the pathogenicity of PR8-derived recombinant viruses in mice hinders further immunological studies. In the present study, we generated PR8-derived H5N1 recombinant viruses, in which haemagglutinin (HA) and neuraminidase (NA) originated from a mouse-pathogenic H5N1 low pathogenic avian influenza virus (LPAIV), and the non-structural proteins (NS) and polymerase basic protein 2 (PB2) originated from different H9N2 LPAIVs. In contrast to the control H5N1 recombinant virus, harboring six internal genes from PR8, the NS and PB2 recombinant viruses did not cause body weight loss in mice. However, the NS recombinant virus replicated in the lungs of mice. It was more immunogenic than the PB2 recombinant virus to protect efficiently against a lethal challenge of a H5N1 highly pathogenic AIV with 89 and 88% amino acid identity in HA and NA, respectively. Therefore, the NS gene may be useful for generating nonpathogenic and immunogenic PR8-derived recombinant viruses for studies of antigenicity and protective efficacy in mice.  相似文献   

19.
《Vaccine》2018,36(16):2213-2219
The 2009 pandemic H1N1 (A(H1N1)pdm09) virus had a highly divergent hemagglutinin (HA) compared to pre-2009 seasonal H1N1 strains. Most peoples were immunologically naïve to the A(H1N1)pdm09, although hospital workers were exposed early in the pandemic before pandemic vaccines became available. Here, we evaluated how pre-existing antibodies influence the induction of cross-functional HA stalk antibodies following A(H1N1)pdm09 vaccination.Fifty-six healthcare workers vaccinated with AS03 adjuvanted A(H1N1)pdm09 vaccine were chosen by their pre-vaccination priming status (primed HI titers ≥ 40 or unprimed < 40). We analyzed the HA head- and stalk-specific serum IgG subclasses at pre- and 21 days post-vaccination. We also assessed the functionality of the HA stalk-specific antibodies to neutralize virus and mediate antibody dependent cellular cytotoxicity (ADCC).Primed individuals had higher pre-existing HA head- and stalk-specific IgG1, as well as higher ADCC functionality of stalk antibodies. However, following vaccination with the adjuvanted pandemic vaccine, only the quantity of HA head specific IgG1 antibodies were significantly higher than in unprimed individuals. The priming status did not impact upon the cross-reactive HA stalk specific IgG antibodies or their ability to neutralize virus or induce ADCC post-vaccination. In conclusion, a single dose of AS03 adjuvanted pandemic vaccine elicited similar levels of functional antibodies in naïve and primed individuals. These findings are important for understanding the immunological factors that impact or modulate pandemic vaccine responses in humans.  相似文献   

20.
The candidate vaccine virus NIBRG-14 was derived by reverse genetics and comprises the haemagglutinin (HA) and neuraminidase (NA) genes derived from the clade 1 virus A/Viet Nam/1194/2004 on an A/Puerto Rico/8/34 (PR8) backbone. The HA gene was modified to remove the multibasic cleavage site motif associated with high pathogenicity. Reports from manufacturers, confirmed by data generated in this laboratory, have shown that this virus yields a low amount of HA antigen. We have generated a panel of new viruses using reverse genetics in which each virus consists of the PR8 backbone, the NA gene from A/Viet Nam/1194/2004 and a chimeric HA gene with sequences from both PR8 and A/Viet Nam/1194/2004. Here we show that a number of these viruses have improved HA antigen content and yield and are therefore better candidate vaccine viruses for use in production of H5N1 vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号