首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
《Vaccine》2019,37(43):6526-6534
Suspension Madin–Darby canine kidney (MDCK) cells (MDCK-N), adherent MDCK cells (MDCK-C), and adherent rhesus monkey kidney LLC-MK2 cells (LLC-MK2D) were systematically evaluated for the preparation of influenza vaccine seed viruses for humans on the basis of primary virus isolation efficiency, growth ability, genetic stability of the hemagglutinin (HA) and neuraminidase (NA) genes, and antigenic properties in hemagglutination inhibition (HI) test of each virus isolate upon further passages. All the subtypes/lineages of influenza viruses (A(H1N1), A(H1N1)pdm09, A(H3N2), B-Victoria, and B-Yamagata) were successfully isolated from clinical specimens by using MDCK-N and MDCK-C, whereas LLC-MK2D did not support virus replication well. Serial passages of A(H1N1) viruses in MDCK-N and MDCK-C induced genetic mutations of HA that resulted in moderate antigenic changes in the HI test. All A(H1N1)pdm09 isolates from MDCK-C acquired amino acid substitutions at the site from K153 to N156 of the HA protein, which resulted in striking antigenic alteration. In contrast, only 30% of MDCK-N isolates showed amino acid changes at this site. The frequency of MDCK-N isolates with less than two-fold reduction in the HI titer was as high as 70%. A(H3N2) and B-Yamagata isolates showed high antigenic stability and no specific amino acid substitution during passages in MDCK-N and MDCK-C. B-Victoria isolates from MDCK-N and MDCK-C acquired genetic changes at HA glycosylation sites that greatly affected their antigenicity. When these cell isolates were applied to passages in hen eggs, A(H1N1), B-Victoria, and B-Yamagata viruses grew well in eggs, while none of the cell isolates of A(H3N2) viruses did. Thus, we demonstrate that MDCK-N might be useful for the preparation of influenza vaccine seed viruses.  相似文献   

2.
《Vaccine》2020,38(35):5707-5717
BackgroundThe 2018/2019 influenza season in the WHO European Region was dominated by influenza A (H1N1)pdm09 and (H3N2) viruses, with very few influenza B viruses detected.MethodsCountries in the European Region reported virus characterization data to The European Surveillance System for weeks 40/2018 to 20/2019. These virus antigenic and genetic characterization and haemagglutinin (HA) sequence data were analysed to describe and assess circulating viruses relative to the 2018/2019 vaccine virus components for the northern hemisphere.ResultsThirty countries reported 4776 viruses characterized genetically and 3311 viruses antigenically. All genetically characterized A(H1N1)pdm09 viruses fell in subclade 6B.1A, of which 90% carried the amino acid substitution S183P in the HA gene. Antigenic data indicated that circulating A(H1N1)pdm09 viruses were similar to the 2018/2019 vaccine virus. Genetic data showed that A(H3N2) viruses mostly fell in clade 3C.2a (75%) and 90% of which were subclade 3C.2a1b. A lower proportion fell in clade 3C.3a (23%) and were antigenically distinct from the vaccine virus. All B/Victoria viruses belonged to clade 1A; 30% carried a double amino acid deletion in HA and were genetically and antigenically similar to the vaccine virus component, while 55% carried a triple amino acid deletion or no deletion in HA; these were antigenically distinct from each other and from the vaccine component. All B/Yamagata viruses belonged to clade 3 and were antigenically similar to the virus component in the quadrivalent vaccine for 2018/2019.ConclusionsA simultaneous circulation of genetically and antigenically diverse A(H3N2) and B/Victoria viruses was observed and represented a challenge to vaccine strain selection.  相似文献   

3.
  目的   了解2014-2019年青岛市人群A型流感病毒(influenza A virus, IAV)流行病学和遗传特征。   方法   提取9 807份流感样病例咽拭子标本的病毒RNA, 采用多重实时反转录PCR方法鉴定分型; 采用一步法反转录PCR扩增IAV血凝素(hemagglutinin, HA)和神经氨酸酶(neuraminidase, NA)基因, 并进行序列测定和基因分析。   结果   2014-2019年青岛市流感病毒流行具有北半球典型季节性流感特征。夏季小量流行主要是H3N2。青岛市IAV中H1N1pdm09和H3N2分别占57.6%和42.4%, 并呈现交替流行。基因群分属于6B和3C。两者HA和NA基因进化都处在净化选择下, 但抗原进化可能具有不同的进化模式。与2009年毒株相比, 2019年青岛市H1N1pdm09和H3N2的HA分别已发生21个和30个氨基酸替换, 均主要发生在头部, 分别包含5个和18个抗原位点。H1N1pdm09检测到两株神经氨酸酶抑制剂抗性突变, 1株为H275Y突变, 另1株为S247N突变; H3N2中未发现NAI抗性突变。   结论   H1N1pdm09和H3N2是2014-2019年青岛市季节性IAV中的主要组分, 进化迅速。加强流感监测和研究十分必要, 流感疫苗株需要及时更新。  相似文献   

4.
目的 了解2012-2018年青岛市人群A型(H1N1)pdm09流感病毒奥司他韦耐药株基因特征。方法 收集2012年4月-2018年3月间青岛市A(H1N1)pdm09毒株397份,逆转录聚合酶链反应(RT-PCR)扩增神经氨酸酶(Neuraminidase,NA)和血凝素(Hemagglutinin,HA)基因全长,序列测定后进行耐药位点和氨基酸变异及进化分析。结果 5株发生了H275Y突变,为奥司他韦耐药株;另有4株S247N突变,可能为奥司他韦耐药株。2012-2018年H275Y突变株检出率依次为2.8 %、2.0 %、0.0 %、1.1 %、0.0 %和0.7 %。NA和HA进化树显示,2012-2013年青岛H275Y突变株与美国耐药株A/Tennessee/03/2013更接近,2013-2014年青岛H275Y突变株与国内株和日本札幌耐药株更接近,这两个年度耐药株的毒株起源可能有所不同。突变株在酶活性位点、抗原决定簇、受体结合位点及其他功能位点(如HA位点D222、Q223和NA位点V241I、N369K和N386K)的转变与野生敏感株一致。结论 青岛市A型(H1N1)pdm09流感病毒奥司他韦耐药株明显增加且流行起源不同,但并未取得比野生株更强的流行能力。奥司他韦仍可作为流感预防和治疗的有效手段。  相似文献   

5.
6.
The evolution of influenza viruses is increasingly pursued by molecular analyses that complement classical methods. The analyses focus on the two surface proteins hemagglutinin (HA) and neuraminidase (NA) which determine the viral antigenic profile. Influenza A(H3N2) viruses are exceptionally variable, so that usually at least two virus variants cocirculate at the same time. Together with influenza B viruses they caused approximately 90% of influenza virus infections in Germany during the last 12 seasons, while influenza A(H1N1) viruses only played a subordinate part. Unexpectedly, reassorted viruses of subtype A(H1N2) appeared during the seasons 2001/02 and 2002/03, but were isolated only rarely and gained no epidemiological significance. Furthermore, during the season 2001/02 influenza B viruses of the Victoria-lineage reappeared in Germany and other countries of the northern hemisphere after 10 years of absence. These viruses reassorted with the cocirculating Yamagata-like influenza B viruses, as could be seen by the appearance of viruses with a Victoria-like HA and a Yamagata-like NA.  相似文献   

7.
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components.  相似文献   

8.
目的 了解镇江地区甲型H1N1流感病毒流行和变异特点。方法 收集2014-2016年镇江地区哨点医院流感样病例标本,进行核酸检测和病毒分离。在病毒流行期按月随机抽取13株甲型H1N1毒株,设计特异性的引物扩增血凝素(hemagglutinin,HA)、神经氨酸酶(neuraminidase,NA)基因,进行测序并分析其遗传进化特征。结果 13株分离株与疫苗株A/California/07/2009的HA基因核苷酸和氨基酸的同源性分别为97.3%~100.0%和96.6%~100.0%;NA基因核苷酸和氨基酸同源性分别为95.6%~97.5%和93.8%~96.6%。系统进化分析表明,13株病毒HA和NA基因分属于不同的进化谱系。分子特征表现为12株HA氨基酸序列均发生了抗原位点Sa区K173Q突变,1株同时发生了Sa区K181E突变;3株还发生了Ca1区V183I突变。受体结合位点和糖基化位点的氨基酸序列均未发生变异。结论 2014-2016年镇江地区甲型H1N1流感病毒与疫苗株相比,其HA、NA基因出现了一定程度的变异,但是抗原性并未发生改变,需进一步加强监测。  相似文献   

9.
《Vaccine》2016,34(27):3102-3108
The 2014/15 influenza season in Europe was characterised by the circulation of influenza A(H3N2) viruses with an antigenic and genetic mismatch from the vaccine strain A/Texas/50/2012(H3N2) recommended for the Northern hemisphere for the 2014/15 season. Italy, differently from other EU countries where most of the subtyped influenza A viruses were H3N2, experienced a 2014/15 season characterized by an extended circulation of two influenza viruses: A(H1N1)pdm09 and A(H3N2), that both contributed substantially to morbidity.Within the context of the existing National sentinel influenza surveillance system (InfluNet) a test-negative case-control study was established in order to produce vaccine effectiveness (VE) estimates. The point estimates VE were adjusted by age group (<5; 5–15; 15–64; 65+ years), the presence of at least one chronic condition, target group for vaccination and need help for walking or bathing. In Italy, adjusted estimates of the 2014/15 seasonal influenza VE against medically attended influenza-like illness (ILI) laboratory-confirmed as influenza for all age groups were 6.0% (95%CI: −36.5 to 35.2%), 43.6% (95%CI: −3.7 to 69.3%), −84.5% (95%CI: (−190.4 to −17.2%) and 50.7% (95% CI: −2.5 to 76.3%) against any influenza virus, A(H1N1)pdm09, A(H3N2) and B, respectively. These results suggest evidence of good VE against A(H1N1)pdm09 and B viruses in Italy and evidence of lack of VE against A(H3N2) virus due to antigenic and genetic mismatch between circulating A(H3N2) and the respective 2014/15 vaccine strain.  相似文献   

10.
Jing X  Phy K  Li X  Ye Z 《Vaccine》2012,30(28):4144-4152
The glycoproteins, heamagglutinin (HA) and neuraminidase (NA) of influenza virus confer host protective immune responses during vaccination, which is the most effective approach for preventing influenza-associated morbidity and mortality. Since the functional balance between the HA and NA proteins may affect viral receptor binding and replication, a pandemic influenza A virus (H1N1 pdm09), strain A/Texas/05/2009, was optimized to elevate its HA antigen content by modifying the NA gene. In this study, we have constructed two 2:6 reassortant viruses between pdmH1N1 (A/Texas/05/2009) and A/Puerto Rico/8/34 (PR8), in which the NA gene of A/Texas/05/2009 was modified to contain part of the NA gene from PR8. One chimeric NA virus has the PR8 transmembrane (TM) region (HNtm 2:6) and the other contains both the PR8 NA TM and stem regions (HNst 2:6). Using quantitative reverse phase-HPLC (RP-HPLC) analysis, we observed that the HNst2:6 virus contains a higher HA1 content than HN2:6 wild type. In addition, this mutant virus displays a higher HA1 to nucleoprotein (NP) ratio, based on gel electrophoresis densitometry analysis. Furthermore, the neuraminidase activity of purified HNst 2:6 virus is approximately 30% lower than that of HN2:6 virus, which is suggestive of a lower incorporation of NA into the viral envelope. Therefore, we propose that the reduction of NA packaging in the virion may lead to a compensatory increase of HA. Such an improvement in HA yield is possibly beneficial to H1N1 pdm09 vaccine production.  相似文献   

11.
BackgroundInfluenza B viruses are a major cause of serious acute respiratory infections in humans.MethodsNasopharyngeal swabs were collected from subjects with influenza-like illness during October 2016–June 2018 and screened for influenza A and B. The hemagglutinin (HA) and neuraminidase (NA) genes of the Lebanese influenza B specimens were sequenced and phylogenetically compared with the vaccine strains and specimens from the Eastern Mediterranean Region and Europe.ResultsInfluenza A and B viruses co-circulated between October and May and peaked between January and March. During the 2016–2017 season, A/H3N2 (33.4%) and B/Yamagata (29.7%) were the predominantly circulating viruses followed by B/Victoria and A/H1N1pdm09 viruses. During the 2017–2018 season, A/H3N2 (31.5%) and A/H1Npdm09 (29.3%) were most prevalent with co-circulation of B/Yamagata and to a lesser extent B/Victoria viruses. The B/Yamagata specimens belonged to clade-3 while the B/Victoria belonged to clade-1A. None of the analyzed specimens had a mutation known to confer resistance to NA inhibitors (NAIs).ConclusionMultiple subtypes of influenza co-circulate each year in Lebanon with a peak between January and March. The trivalent vaccine included a B/Victoria strain which mismatched the B/Yamagata lineage that predominated during the study period, highlighting the importance of quadrivalent vaccines.  相似文献   

12.
Influenza A(H1N1)pdm09 virus has evolved continually since its emergence in 2009. For influenza virus strains, genetic changes occurring in HA1 domain of the hemagglutinin cause the emergence of new variants. The aim of our study is to establish genetic associations between 35 A(H1N1)pdm09 viruses circulating in Cuba in 2011–2012 and 2012–2013 seasons, and A/California/07/2009 strain recommended by WHO as the H1N1 component of the influenza vaccine. The phylogenetic analysis revealed the circulation of clades 3, 6A, 6B, 6C and 7. Mutations were detected in the antigenic site or in the receptor-binding domains of HA1 segment, including S174P, S179N, K180Q, S202T, S220T and R222K. Substitutions S174P, S179N, K180Q and R222K were detected in Cuban strains for the first time.  相似文献   

13.
During July-December 2011, a variant virus, influenza A(H3N2)v, caused 12 human cases of influenza. The virus contained genes originating from swine, avian, and human viruses, including the M gene from influenza A(H1N1)pdm09 virus. Influenza A(H3N2)v viruses were antigenically distinct from seasonal influenza viruses and similar to proposed vaccine virus A/Minnesota/11/2010.  相似文献   

14.
《Vaccine》2019,37(20):2731-2740
Influenza A(H1N1)pdm09 viruses have been circulating throughout the world since the 2009 pandemic. A/California/07/2009 (H1N1) virus was included in seasonal influenza vaccines for seven years altogether, providing a great opportunity to analyse vaccine-induced immunity in relation to the postpandemic evolution of the A(H1N1)pdm09 virus. Serum antibodies against various epidemic strains of influenza A(H1N1)pdm09 viruses were measured among health care workers (HCWs) by haemagglutination inhibition and microneutralization tests before and after 2010 and 2012 seasonal influenza vaccinations. We detected high responses of vaccine-induced neutralizing antibodies to six distinct genetic groups. Our results indicate antigenic similarity between vaccine and circulating A(H1N1)pdm09 strains, and substantial vaccine-induced immunity against circulating epidemic viruses.  相似文献   

15.
《Vaccine》2018,36(38):5774-5780
BackgroundThe objective of this study was to estimate influenza vaccine effectiveness (VE) for the 2016/17 epidemic of co-circulating influenza A(H1N1)pdm09 and A(H3N2) viruses in Beijing, the capital of China.MethodsThe surveillance-based study included all swabbed patients through influenza virological surveillance, between November 2016 and April 2017. A test-negative case-control design was used to estimate influenza VE against medically-attended laboratory-confirmed influenza in outpatient settings. Cases were influenza-like illness (ILI) patients who tested positive for influenza, and controls were influenza negative patients.ResultsA total of 10,496 ILI patients were enrolled and swabbed. Among them, 735 tested positive for influenza A(H1N1)pdm09, 1851 for A(H3N2), and 40 for type B. Of the 45 randomly selected specimens out of 1851 influenza A(H3N2) viruses, 2(4.4%) belonged to the H3N2 3C.2a1 clade, and 43(95.6%) belonged to A/Hong Kong/4801/2014-like 3C.2a clade. Among the 43 viruses of the 3C.2a clade, 32 viruses clustered in one subgroup carrying T131K, R142K and R261Q substitutions. The adjusted VE against all influenza was low at 25% (95% confidence interval (CI): 0–43%), with 54% (95%CI: 22–73%) for influenza A(H1N1)pdm09, and 2% (95%CI: −35% to 29%) for influenza A(H3N2).ConclusionsOur study suggested a moderate VE against influenza A(H1N1)pdm09, but low VE against influenza A(H3N2) in Beijing, 2016/17 season. Amino acid substitutions in the hemagglutinin may contribute to the low VE against influenza A(H3N2) for this season.  相似文献   

16.
BackgroundWe examined the influence of some factors on seasonal influenza vaccine effectiveness (VE) from test-negative design (TND) studies.MethodsWe systematically searched for full-text publications of VE against laboratory-confirmed influenza from TND studies in outpatient settings after the 2009/10 influenza pandemic. Two reviewers independently selected and extracted data from the included studies. We calculated pooled adjusted VE across geographical regions, age groups and levels of vaccine antigenic similarity with circulating virus strains, using an inverse variance, random-effects model.ResultsWe included 76 full-text articles from 11,931 citations. VE estimates against A(H1N1)pdm09, A(H3N2), influenza B, and all influenza were homogenous and point pooled VE higher in the Southern hemisphere compared with the Northern hemisphere. The difference in pooled VE between the Southern and Northern hemispheres was statistically significant for A(H3N2), influenza B, and all influenza. A consistent pattern was observed in pooled VE across both hemispheres and continents, with the highest point pooled VE being against A(H1N1)pdm09, followed by influenza B, and lowest against A(H3N2). A nearly consistent pattern was observed in pooled VE across age groups in the Northern hemisphere, with pooled VE mostly decreasing with age. Point pooled VE against A(H3N2), influenza B, and all influenza were statistically significantly higher when vaccine was antigenically similar to circulating virus strains compared with when antigenically dissimilar. Similar pattern was observed in the Northern hemisphere, but there was a lack of data from the Southern hemisphere.ConclusionConsistent patterns appear to exist in seasonal influenza VE across regions, age groups, and levels of vaccine antigenic similarity with circulating virus strains, with best vaccine performance against A(H1N1)pdm09 and worst against A(H3N2). The evidence highlights the need to consider geographical location, age, and vaccine antigenic similarity with circulating virus strains when designing and evaluating influenza VE studies.  相似文献   

17.
《Vaccine》2018,36(33):5097-5103
Current influenza vaccines do not provide effective protection against heterologous influenza viruses. The ability of the novel M2SR influenza vaccine to protect against drifted influenza viruses was evaluated in naïve ferrets and in ferrets with pre-existing immunity to influenza. In naïve ferrets, M2SR provided similar protection against drifted challenge viruses as the comparator vaccine, FluMist®. However, in ferrets with pre-existing immunity, M2SR provided superior protection than FluMist in two model systems.In the first model, ferrets were infected with influenza A H1N1pdm and influenza B viruses to mimic the diverse influenza exposure in humans. The pre-infected ferrets, seropositive to H1N1pdm and influenza B but seronegative to H3N2, were then vaccinated with H3N2 M2SR or monovalent H3N2 FluMist virus (A/Brisbane/10/2007, clade 1) and challenged 6 weeks later with a drifted H3N2 virus (clade 3C.2a). Antibody titers to Brisbane/10/2007 were higher in M2SR vaccinated ferrets than in FluMist vaccinated ferrets in the pre-infected ferrets whereas the opposite was observed in naïve ferrets. After challenge with drifted H3N2 virus, M2SR provided superior protection than FluMist monovalent vaccine.In the second model, the impact of homologous pre-existing immunity upon vaccine-induced protection was evaluated. Ferrets, pre-infected with H1N1pdm virus, were vaccinated 90 days later with H1N1pdm M2SR or FluMist monovalent vaccine and challenged 6 weeks later with a pre-pandemic seasonal H1N1 virus, A/Brisbane/59/2007 (Bris59). While cross-reactive serum IgG antibodies against the Bris59 HA were detected after vaccination, anti-Bris59 hemagglutination inhibition antibodies were only detected post-challenge. M2SR provided better protection against Bris59 challenge than FluMist suggesting that homologous pre-existing immunity affected FluMist virus to a greater degree than M2SR.These results suggest that the single replication intranasal M2SR vaccine provides effective protection against drifted influenza A viruses not only in naïve ferrets but also in those with pre-existing immunity in contrast to FluMist viruses.  相似文献   

18.
Pandemic influenza A H1N1 [A(H1N1)pdm09] was first detected in Brazil in May 2009, and spread extensively throughout the country causing a peak of infection during June to August 2009. Since then, it has continued to circulate with a seasonal pattern, causing high rates of morbidity and mortality. Over this period, the virus has continually evolved with the accumulation of new mutations. In this study we analyze the phylogenetic relationship in a collection of 220 A(H1N1)pdm09 hemagglutinin (HA) gene sequences collected during and after the pandemic period (2009 to 2014) in Brazil. In addition, we have looked for evidence of viral polymorphisms associated with severe disease and compared the range of viral variants with the vaccine strain (A/California/7/2009) used throughout this period.The phylogenetic analyses in this study revealed the circulation of at least eight genetic groups in Brazil. Two (G6-pdm and G7-pdm) co-circulated during the pandemic period, showing an early pattern of viral diversification with a low genetic distance from vaccine strain. Other phylogenetic groups, G5, G6 (including 6B, 6C and 6D subgroups), and G7 were found in the subsequent epidemic seasons from 2011 to 2014. These viruses exhibited more amino acid differences from the vaccine strain with several substitutions at the antigenic sites. This is associated with a theoretical decrease in the vaccine efficacy. Furthermore, we observed that the presence of any polymorphism at residue 222 of the HA gene was significantly associated with severe/fatal cases, reinforcing previous reports that described this residue as a potential virulence marker.This study provides new information about the circulation of some viral variants in Brazil, follows up potential genetic markers associated with virulence and allows infer if the efficacy of the current vaccine against more recent A(H1N1)pdm09 strains may be reduced.  相似文献   

19.
《Vaccine》2019,37(32):4543-4550
During the 2013–2014 influenza season, the quadrivalent live attenuated influenza vaccine (QLAIV), had lower than expected vaccine effectiveness (VE) against circulating A/H1N1pdm09 viruses in the USA. The underlying reason proposed for this was that the A/H1N1pdm09 vaccine strain, A/California/07/2009 (A/CA09), had a thermally unstable haemagglutinin (HA) protein. Consequently, a new A/H1N1pdm09 candidate strain, A/Bolivia/559/2013 (A/BOL13), was developed for inclusion in the 2015–2016 QLAIV. A key parameter for selection of A/BOL13 was its more thermostable HA phenotype compared with A/CA09. During the 2015–2016 season, QLAIV containing A/BOL13 was found in some studies to have improved, but still with suboptimal, VE against circulating A/H1N1pdm09 viruses and was not recommended for use by the CDC in the US market in the 2016–2017 influenza season. This suggested that improved HA thermostability had not entirely resolved the reduced VE observed. One hypothesis for this was that, by improving thermostability, the A/BOL13 HA protein had been over-stabilised, compromising its activation at the low endosomal pH required for successful viral entry. Here we demonstrate that, while the A/BOL13 HA protein is more stable than that of A/CA09, its thermal and pH stability were comparable with historically efficacious LAIV strains, suggesting that the HA had not been over-stabilised. Furthermore, studies simulating potential heat exposure during distribution by exposing QLAIV nasal sprayers to 33 °C for 4 h showed that, while remaining within product specification, A/CA09 viral potency was statistically decreased after 12 weeks at 2–8 °C. These data suggest that although unfavourable HA protein stability may have contributed to the reduced VE of A/CA09 in 2013–2014, it was unlikely to have affected A/BOL13 in 2015–2016. We conclude that HA stability was not the primary cause of the reduced effectiveness of LAIV against A/H1N1pdm09 viruses in the 2013–2014 and 2015–2016 seasons.  相似文献   

20.
In this study, we compared properties of the neuraminidase (NA) of the H1N1/2009 pandemic virus (H1N1pdm) and N1 NAs of other influenza viruses. The H1N1pdm NA was more active than NAs of seasonal H1N1 viruses, hydrolyzed Neu5Acα2-3Gal linkage as efficiently as did avian viruses and cleaved Neu5Acα2-6Gal linkage as efficiently as classical swine viruses. To assess the functional balance between heterologous NAs and pandemic virus HA, we generated four recombinant viruses that shared seven genes of A/Hamburg/5/09 and contained the NA gene from representative avian, swine and human viruses. The viruses harboring NA from avian, Eurasian avian-like swine and seasonal human viruses eluted more slowly from red blood cells, were more sensitive to neutralization by human airway mucins, and replicated less efficiently in differentiated human tracheo-bronchial epithelial cultures as compared with the viruses containing the NA of H1N1pdm and the NA of the North American classical swine virus lineage. Our data suggest that functional properties of the NA of H1N1pdm could be closer to those of classical swine viruses than to those of avian, avian-like swine and seasonal human viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号