首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Human brain activity associated with audiovisual perception and attention   总被引:1,自引:0,他引:1  
Coherent perception of objects in our environment often requires perceptual integration of auditory and visual information. Recent behavioral data suggest that audiovisual integration depends on attention. The current study investigated the neural basis of audiovisual integration using 3-Tesla functional magnetic resonance imaging (fMRI) in 12 healthy volunteers during attention to auditory or visual features, or audiovisual feature combinations of abstract stimuli (simultaneous harmonic sounds and colored circles). Audiovisual attention was found to modulate activity in the same frontal, temporal, parietal and occipital cortical regions as auditory and visual attention. In addition, attention to audiovisual feature combinations produced stronger activity in the superior temporal cortices than attention to only auditory or visual features. These modality-specific areas might be involved in attention-dependent perceptual binding of synchronous auditory and visual events into coherent audiovisual objects. Furthermore, the modality-specific temporal auditory and occipital visual cortical areas showed attention-related modulations during both auditory and visual attention tasks. This result supports the proposal that attention to stimuli in one modality can spread to encompass synchronously presented stimuli in another modality.  相似文献   

2.
Hashimoto T  Usui N  Taira M  Nose I  Haji T  Kojima S 《NeuroImage》2006,31(4):1762-1770
This event-related fMRI study was conducted to examine the blood-oxygen-level-dependent responses to the processing of auditory onomatopoeic sounds. We used a sound categorization task in which the participants heard four types of stimuli: onomatopoeic sounds, nouns (verbal), animal (nonverbal) sounds, and pure tone/noise (control). By discriminating between the categories of target sounds (birds/nonbirds), the nouns resulted in activations in the left anterior superior temporal gyrus (STG), whereas the animal sounds resulted in activations in the bilateral superior temporal sulcus (STS) and the left inferior frontal gyrus (IFG). In contrast, the onomatopoeias activated extensive brain regions, including the left anterior STG, the region from the bilateral STS to the middle temporal gyrus, and the bilateral IFG. The onomatopoeic sounds showed greater activation in the right middle STS than did the nouns and environmental sounds. These results indicate that onomatopoeic sounds are processed by extensive brain regions involved in the processing of both verbal and nonverbal sounds. Thus, we can posit that onomatopoeic sounds can serve as a bridge between nouns and animal sounds. This is the first evidence to demonstrate the way in which onomatopoeic sounds are processed in the human brain.  相似文献   

3.
Joanisse MF  Gati JS 《NeuroImage》2003,19(1):64-79
Speech perception involves recovering the phonetic form of speech from a dynamic auditory signal containing both time-varying and steady-state cues. We examined the roles of inferior frontal and superior temporal cortex in processing these aspects of auditory speech and nonspeech signals. Event-related functional magnetic resonance imaging was used to record activation in superior temporal gyrus (STG) and inferior frontal gyrus (IFG) while participants discriminated pairs of either speech syllables or nonspeech tones. Speech stimuli differed in either the consonant or the vowel portion of the syllable, whereas the nonspeech signals consisted of sinewave tones differing along either a dynamic or a spectral dimension. Analyses failed to identify regions of activation that clearly contrasted the speech and nonspeech conditions. However, we did identify regions in the posterior portion of left and right STG and left IFG yielding greater activation for both speech and nonspeech conditions that involved rapid temporal discrimination, compared to speech and nonspeech conditions involving spectral discrimination. The results suggest that, when semantic and lexical factors are adequately ruled out, there is significant overlap in the brain regions involved in processing the rapid temporal characteristics of both speech and nonspeech signals.  相似文献   

4.
Zarate JM  Zatorre RJ 《NeuroImage》2008,40(4):1871-1887
Proper singing requires the integration of auditory feedback mechanisms with the vocal motor system, such that vocal pitch can be precisely controlled. To determine the neural substrates involved in audio-vocal integration, non-musicians and experienced singers underwent fMRI scanning while they sang a single tone with either unaltered (“simple”) or pitch-shifted auditory feedback; in pitch-shifted trials, subjects were instructed either to ignore or compensate for the shifted feedback. We hypothesized that the anterior cingulate cortex (ACC), superior temporal gyrus (STG), and anterior insula may be involved in audio-vocal integration due to their functional roles during singing and their anatomical connectivity. Although singers were more accurate than non-musicians in simple singing, both groups recruited similar functional networks. Singers ignored the shifted feedback better than non-musicians, and both groups also displayed different patterns of neural activity for this task: singers recruited bilateral auditory areas and left putamen, while non-musicians recruited the left supramarginal gyrus and primary motor cortex. While there were no significant group differences in performing the compensate task, singers displayed enhanced activity in the ACC, superior temporal sulcus, and putamen, whereas non-musicians exhibited increased activity in the dorsal premotor cortex, a region involved with sensorimotor interactions. We propose two neural substrates for audio-vocal integration: the dorsal premotor cortex may act as a basic interface, but with vocal training and practice, the ACC, auditory cortices, and putamen may be increasingly recruited as people learn to monitor their auditory feedback and adjust their vocal output accordingly.  相似文献   

5.
Frühholz S  Grandjean D 《NeuroImage》2012,62(3):1658-1666
Vocal expressions commonly elicit activity in superior temporal and inferior frontal cortices, indicating a distributed network to decode vocally expressed emotions. We examined the involvement of this fronto-temporal network for the decoding of angry voices during attention towards (explicit attention) or away from emotional cues in voices (implicit attention) based on a reanalysis of previous data (Frühholz, S., Ceravolo, L., Grandjean, D., 2012. Cerebral Cortex 22, 1107-1117). The general network revealed high interconnectivity of bilateral inferior frontal gyrus (IFG) to different bilateral voice-sensitive regions in mid and posterior superior temporal gyri. Right superior temporal gyrus (STG) regions showed connectivity to the left primary auditory cortex and secondary auditory cortex (AC) as well as to high-level auditory regions. This general network revealed differences in connectivity depending on the attentional focus. Explicit attention to angry voices revealed a specific right-left STG network connecting higher-level AC. During attention to a nonemotional vocal feature we also found a left-right STG network implicitly elicited by angry voices that also included low-level left AC. Furthermore, only during this implicit processing there was widespread interconnectivity between bilateral IFG and bilateral STG. This indicates that while implicit attention to angry voices recruits extended bilateral STG and IFG networks for the sensory and evaluative decoding of voices, explicit attention to angry voices solely involves a network of bilateral STG regions probably for the integrative recognition of emotional cues from voices.  相似文献   

6.
Osnes B  Hugdahl K  Specht K 《NeuroImage》2011,54(3):2437-2445
Several reports of premotor cortex involvement in speech perception have been put forward. Still, the functional role of premotor cortex is under debate. In order to investigate the functional role of premotor cortex, we presented parametrically varied speech stimuli in both a behavioral and functional magnetic resonance imaging (fMRI) study. White noise was transformed over seven distinct steps into a speech sound and presented to the participants in a randomized order. As control condition served the same transformation from white noise into a music instrument sound. The fMRI data were modelled with Dynamic Causal Modeling (DCM) where the effective connectivity between Heschl's gyrus, planum temporale, superior temporal sulcus and premotor cortex were tested. The fMRI results revealed a graded increase in activation in the left superior temporal sulcus. Premotor cortex activity was only present at an intermediate step when the speech sounds became identifiable but were still distorted but was not present when the speech sounds were clearly perceivable. A Bayesian model selection procedure favored a model that contained significant interconnections between Heschl's gyrus, planum temporal, and superior temporal sulcus when processing speech sounds. In addition, bidirectional connections between premotor cortex and superior temporal sulcus and from planum temporale to premotor cortex were significant. Processing non-speech sounds initiated no significant connections to premotor cortex. Since the highest level of motor activity was observed only when processing identifiable sounds with incomplete phonological information, it is concluded that premotor cortex is not generally necessary for speech perception but may facilitate interpreting a sound as speech when the acoustic input is sparse.  相似文献   

7.
目的利用fMRI技术,通过听觉呈现语言任务,探讨刺激呈现通道对负激活脑区的影响,进一步检验静息状态人脑默认活动假说。方法13名健康成年志愿者参加实验。进行2次fMRI实验。实验1(简单任务)任务期要求受试者听无意义假词;实验2(复杂任务)要求受试者听真词并作词语属性判断(具体或抽象)。静息期要求受试者闭眼、静卧,不要做任何主动思维活动。利用SPM2软件进行数据处理。先分析单个被试,然后行组间比较。采用反减法获得负激活图。并把本次实验结果与以往视觉呈现任务结果进行比较。结果初级视觉皮层与初级听觉皮层的负激活存在明显的通道依赖性,听觉呈现刺激引起视觉皮层负激活,视觉呈现刺激时听觉皮层表现为负激活。非任务依赖性负激活脑区包括扣带回后部/楔前叶(BA31/30)、扣带回前部(BA24/32)、两侧颞上回(BA8)、两颞下回前部(BA20)、两侧顶下小叶(BA39/40)。这些区域的负激活与刺激呈现通道方式及特定刺激任务无关。该负激活脑区模式与人类默认脑活动网络基本一致。结论刺激呈现通道是影响任务依赖性负激活的因素之一,探讨负激活问题时应该考虑到这一因素。同时,本研究进一步验证了静息状态时人脑默认活动假说。  相似文献   

8.
Wang L  Zang Y  He Y  Liang M  Zhang X  Tian L  Wu T  Jiang T  Li K 《NeuroImage》2006,31(2):496-504
A selective distribution of Alzheimer's disease (AD) pathological lesions in specific cortical layers isolates the hippocampus from the rest of the brain. However, functional connectivity between the hippocampus and other brain regions remains unclear in AD. Here, we employ a resting state functional MRI (fMRI) to examine changes in hippocampal connectivity comparing 13 patients with mild AD versus 13 healthy age-matched controls. Hippocampal connectivity was investigated by examination of the correlation between low frequency fMRI signal fluctuations in the hippocampus and those in all other brain regions. We found that functional connectivity between the right hippocampus and a set of regions was disrupted in AD; these regions are: medial prefrontal cortex (MPFC), ventral anterior cingulate cortex (vACC), right inferotemporal cortex, right cuneus extending into precuneus, left cuneus, right superior and middle temporal gyrus and posterior cingulate cortex (PCC). We also found increased functional connectivity between the left hippocampus and the right lateral prefrontal cortex in AD. In addition, rightward asymmetry of hippocampal connectivity observed in elderly controls was diminished in AD patients. The disrupted hippocampal connectivity to the MPFC, vACC and PCC provides further support for decreased activity in "default mode network" previously shown in AD. The decreased connectivity between the hippocampus and the visual cortices might indicate reduced integrity of hippocampus-related cortical networks in AD. Moreover, these findings suggest that resting-state fMRI might be an appropriate approach for studying pathophysiological changes in early AD.  相似文献   

9.
Specht K  Reul J 《NeuroImage》2003,20(4):1944-1954
With this study, we explored the blood oxygen level-dependent responses within the temporal lobe to short auditory stimuli of different classes. To address this issue, we performed an attentive listening event-related fMRI study, where subjects were required to concentrate during the presentation of different types of stimuli. Because the order of stimuli was randomized and not predictable for the subject, the observed differences between the stimuli types were interpreted as an automatic effect and were not affected by attention. We used three types of stimuli: tones, sounds of animals and instruments, and words. We found in all cases bilateral activations of the primary and secondary auditory cortex. The strength and lateralization depended on the type of stimulus. The tone trials led to the weakest and smallest activations. The perception of sounds increased the activated network bilaterally into the superior temporal sulcus mainly on the right and the perception of words led to the highest activation within the left superior temporal sulcus as well as in left inferior frontal gyrus. Within the left temporal sulcus, we were able to distinguish between different subsystems, showing an extending activation from posterior to anterior for speech and speechlike information. Whereas posterior parts were involved in analyzing the complex auditory structure of sounds and speech, the middle and anterior parts responded strongest only in the perception of speech. In summary, a functional segregation of the temporal lobes into several subsystems responsible for auditory processing was visible. A lateralization for verbal stimuli to the left and sounds to the right was already detectable when short stimuli were used.  相似文献   

10.
Humans and many other animals use acoustical signals to mediate social interactions with conspecifics. The evolution of sound-based communication is still poorly understood and its neural correlates have only recently begun to be investigated. In the present study, we applied functional MRI to humans and macaque monkeys listening to identical stimuli in order to compare the cortical networks involved in the processing of vocalizations. At the first stages of auditory processing, both species showed similar fMRI activity maps within and around the lateral sulcus (the Sylvian fissure in humans). Monkeys showed remarkably similar responses to monkey calls and to human vocal sounds (speech or otherwise), mainly in the lateral sulcus and the adjacent superior temporal gyrus (STG). In contrast, a preference for human vocalizations and especially for speech was observed in the human STG and superior temporal sulcus (STS). The STS and Broca's region were especially responsive to intelligible utterances. The evolution of the language faculty in humans appears to have recruited most of the STS. It may be that in monkeys, a much simpler repertoire of vocalizations requires less involvement of this temporal territory.  相似文献   

11.
The beneficial effects of mindful awareness and mindfulness meditation training on physical and psychological health are thought to be mediated in part through changes in underlying brain processes. Functional connectivity MRI (fcMRI) allows identification of functional networks in the brain. It has been used to examine state-dependent activity and is well suited for studying states such as meditation. We applied fcMRI to determine if Mindfulness-Based Stress Reduction (MBSR) training is effective in altering intrinsic connectivity networks (ICNs). Healthy women were randomly assigned to participate in an 8-week Mindfulness-Based Stress Reduction (MBSR) training course or an 8-week waiting period. After 8 weeks, fMRI data (1.5T) was acquired while subjects rested with eyes closed, with the instruction to pay attention to the sounds of the scanner environment. Group independent component analysis was performed to investigate training-related changes in functional connectivity. Significant MBSR-related differences in functional connectivity were found mainly in auditory/salience and medial visual networks. Relative to findings in the control group, MBSR subjects showed (1) increased functional connectivity within auditory and visual networks, (2) increased functional connectivity between auditory cortex and areas associated with attentional and self-referential processes, (3) stronger anticorrelation between auditory and visual cortex, and (4) stronger anticorrelation between visual cortex and areas associated with attentional and self-referential processes. These findings suggest that 8 weeks of mindfulness meditation training alters intrinsic functional connectivity in ways that may reflect a more consistent attentional focus, enhanced sensory processing, and reflective awareness of sensory experience.  相似文献   

12.
Healthy subjects show increased activation in left temporal lobe regions in response to speech sounds compared to complex nonspeech sounds. Abnormal lateralization of speech-processing regions in the temporal lobes has been posited to be a cardinal feature of schizophrenia. Event-related fMRI was used to test the hypothesis that schizophrenic patients would show an abnormal pattern of hemispheric lateralization when detecting speech compared with complex nonspeech sounds in an auditory oddball target-detection task. We predicted that differential activation for speech in the vicinity of the superior temporal sulcus would be greater in schizophrenic patients than in healthy subjects in the right hemisphere, but less in patients than in healthy subjects in the left hemisphere. Fourteen patients with schizophrenia (selected from an outpatient population, 2 females, 12 males, mean age 35.1 years) and 29 healthy subjects (8 females, 21 males, mean age 29.3 years) were scanned while they performed an auditory oddball task in which the oddball stimuli were either speech sounds or complex nonspeech sounds. Compared to controls, individuals with schizophrenia showed greater differential activation between speech and nonspeech in right temporal cortex, left superior frontal cortex, and the left temporal-parietal junction. The magnitude of the difference in the left temporal parietal junction was significantly correlated with severity of disorganized thinking. This study supports the hypothesis that aberrant functional lateralization of speech processing is an underlying feature of schizophrenia and suggests the magnitude of the disturbance in speech-processing circuits may be associated with severity of disorganized thinking.  相似文献   

13.
Despite the high prevalence of obesity, eating disorders, and weight-related health problems in modernized cultures, the neural systems regulating human feeding remain poorly understood. Therefore, we applied functional magnetic resonance imaging (fMRI) to study the cerebral responses of 13 healthy normal-weight adult women as they viewed color photographs of food. The motivational salience of the stimuli was manipulated by presenting images from three categories: high-calorie foods, low-calorie foods, and nonedible dining-related utensils. Both food categories were associated with bilateral activation of the amygdala and ventromedial prefrontal cortex. High-calorie foods yielded significant activation within the medial and dorsolateral prefrontal cortex, thalamus, hypothalamus, corpus callosum, and cerebellum. Low-calorie foods yielded smaller regions of focal activation within medial orbitofrontal cortex; primary gustatory/somatosensory cortex; and superior, middle, and medial temporal regions. Findings suggest that the amygdala may be responsive to a general category of biologically relevant stimuli such as food, whereas separate ventromedial prefrontal systems may be activated depending on the perceived reward value or motivational salience of food stimuli.  相似文献   

14.
背景:平衡针治疗疾病疗效显著,但缺乏相关现代科学理论机制。目的:利用静息态脑功能成像技术探讨平衡针疗法的中枢作用机制。方法:纳入10例腰椎间盘突出腰腿痛患者及10例正常受试者,于平衡针针刺前后进行功能磁共振扫描,通过AFNI软件对与双侧杏仁核表现为显著联系的脑区进行功能连接分析,并对平衡针刺后腰椎间盘突出患者及正常受试者的脑功能连接的差异进行探讨。结果与结论:经平衡针治疗后10例腰椎间盘突出患者疼痛均有好转。脑功能连接分析显示腰椎间盘突出患者丘脑、脑干、腹前核、腹外侧核、额内侧回、额上回、额叶眶上回、额下回、颞上回、颞中回、海马回、扣带回、岛叶等脑区功能连接增强。正常受试者双侧颞中回、双侧眶上回、双侧尾状核头、双侧岛叶、左侧腹背侧核、双侧额上回、左侧额中回、前扣带回、右侧顶下小叶与杏仁核连接增强;双侧小脑齿状核、小脑蚓、左侧小脑坡、双侧舌回、左侧枕中回、右侧额上回、右侧中央前回、双侧顶下小叶、右侧顶上小叶、右侧中央后回与杏仁核连接下降。提示通过静息脑功能成像技术对杏仁核的研究有助于更深入理解平衡针灸治疗腰腿痛的中枢机制。  相似文献   

15.
目的 评价敏感编码螺旋(Sense-Spiral)成像技术在静息态fMRI中的图像质量及其应用。方法 分别采用EPI和Sense-Spiral序列采集50名健康青年志愿者的静息状态fMRI数据,比较所得数据的相对信号强度和伪影严重程度,及对默认模式网络(DMN)和其功能连接的显示能力。结果 与EPI序列相比,Sense-Spiral序列具有更高的灰白质对比度,显著改善了内侧眶额皮层、腹侧基底核区、颞极、颞下回前部和小脑半球的信号丢失和图像变形。Sense-Spiral序列可准确构建DMN,其内后扣带皮层与内侧眶额皮层、中扣带回/楔前叶前部的功能连接强度高于EPI序列,与内侧枕叶、楔前叶后下部、双侧角回及颞中回后部的功能连接强度低于EPI序列(P<0.05,FWE校正)。结论 Sense-Spiral序列可明显改善静息态fMRI的图像质量,尤其适用于EPI图像伪影严重脑区的功能连接分析。  相似文献   

16.
Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.  相似文献   

17.
Deshpande G  Hu X  Stilla R  Sathian K 《NeuroImage》2008,40(4):1807-1814
Although it is accepted that visual cortical areas are recruited during touch, it remains uncertain whether this depends on top-down inputs mediating visual imagery or engagement of modality-independent representations by bottom-up somatosensory inputs. Here we addressed this by examining effective connectivity in humans during haptic perception of shape and texture with the right hand. Multivariate Granger causality analysis of functional magnetic resonance imaging (fMRI) data was conducted on a network of regions that were shape- or texture-selective. A novel network reduction procedure was employed to eliminate connections that did not contribute significantly to overall connectivity. Effective connectivity during haptic perception was found to involve a variety of interactions between areas generally regarded as somatosensory, multisensory, visual and motor, emphasizing flexible cooperation between different brain regions rather than rigid functional separation. The left postcentral sulcus (PCS), left precentral gyrus and right posterior insula were important sources of connections in the network. Bottom-up somatosensory inputs from the left PCS and right posterior insula fed into visual cortical areas, both the shape-selective right lateral occipital complex (LOC) and the texture-selective right medial occipital cortex (probable V2). In addition, top-down inputs from left postero-supero-medial parietal cortex influenced the right LOC. Thus, there is strong evidence for the bottom-up somatosensory inputs predicted by models of visual cortical areas as multisensory processors and suggestive evidence for top-down parietal (but not prefrontal) inputs that could mediate visual imagery. This is consistent with modality-independent representations accessible through both bottom-up sensory inputs and top-down processes such as visual imagery.  相似文献   

18.
Speech perception can use not only auditory signals, but also visual information from seeing the speaker's mouth. The relative timing and relative location of auditory and visual inputs are both known to influence crossmodal integration psychologically, but previous imaging studies of audiovisual speech focused primarily on just temporal aspects. Here we used Positron Emission Tomography (PET) during audiovisual speech processing to study how temporal and spatial factors might jointly affect brain activations. In agreement with previous work, synchronous versus asynchronous audiovisual speech yielded increased activity in multisensory association areas (e.g., superior temporal sulcus [STS]), plus in some unimodal visual areas. Our orthogonal manipulation of relative stimulus position (auditory and visual stimuli presented at same location vs. opposite sides) and stimulus synchrony showed that (i) ventral occipital areas and superior temporal sulcus were unaffected by relative location; (ii) lateral and dorsal occipital areas were selectively activated for synchronous bimodal stimulation at the same external location; (iii) right inferior parietal lobule was activated for synchronous auditory and visual stimuli at different locations, that is, in the condition classically associated with the 'ventriloquism effect' (shift of perceived auditory position toward the visual location). Thus, different brain regions are involved in different aspects of audiovisual integration. While ventral areas appear more affected by audiovisual synchrony (which can influence speech identification), more dorsal areas appear to be associated with spatial multisensory interactions.  相似文献   

19.
Neuroimaging studies of auditory and visual phonological processing have revealed activation of the left inferior and middle frontal gyri. However, because of task differences in these studies (e.g., consonant discrimination versus rhyming), the extent to which this frontal activity is due to modality-specific linguistic processes or to more general task demands involved in the comparison and storage of stimuli remains unclear. An fMRI experiment investigated the functional neuroanatomical basis of phonological processing in discrimination and rhyming tasks across auditory and visual modalities. Participants made either "same/different" judgments on the final consonant or rhyme judgments on auditorily or visually presented pairs of words and pseudowords. Control tasks included "same/different" judgments on pairs of single tones or false fonts and on the final member in pairs of sequences of tones or false fonts. Although some regions produced expected modality-specific activation (i.e., left superior temporal gyrus in auditory tasks, and right lingual gyrus in visual tasks), several regions were active across modalities and tasks, including posterior inferior frontal gyrus (BA 44). Greater articulatory recoding demands for processing of pseudowords resulted in increased activation for pseudowords relative to other conditions in this frontal region. Task-specific frontal activation was observed for auditory pseudoword final consonant discrimination, likely due to increased working memory demands of selection (ventrolateral prefrontal cortex) and monitoring (mid-dorsolateral prefrontal cortex). Thus, the current study provides a systematic comparison of phonological tasks across modalities, with patterns of activation corresponding to the cognitive demands of performing phonological judgments on spoken and written stimuli.  相似文献   

20.
Recent evidence suggests that both spatiotemporally distinct and overlapping brain regions are involved in bottom-up- and top-down-driven attentional processing. However, existing studies are based on a variety of different approaches, including electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), raising the question of how EEG and fMRI findings in this field are related to each other. The present study aimed at disentangling common from specific regions underlying bottom-up novelty-processing and top-down target-processing. Simultaneous EEG and fMRI recordings were employed to investigate how fMRI-identified brain regions contribute to event-related potential (ERP) signatures of novelty- and target-processing. Fourteen subjects performed a modified novelty oddball task in which either rare tones or novel sounds served as targets in different blocks, allowing us to separate novelty-related from mere distractor-related effects. ERP signatures of novelty- and target-processing could be identified, confirming previous research based on recordings outside the scanner. fMRI analyses revealed that, despite considerable overlap of regions activated during novelty- and target-processing, bilateral superior temporal and right inferior frontal areas showed pronounced activation related to novelty-processing. fMRI-informed ERP dipole seeding was used to integrate both signals. The source modeling results further implicated temporal and inferior frontal sources in novelty-processing. Target-related fMRI activation on the other hand was confirmed in a network comprising distributed frontoparietal regions as well as bilateral caudate nucleus and cerebellum. Most regions identified by fMRI showed a contribution to target-related ERP signatures. This pattern of findings underscores the potential of simultaneous EEG/fMRI recordings for the spatiotemporal characterization of target- and novelty-processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号