首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
PURPOSE: To investigate treatment of human pancreatic cancer cell lines and xenografts with combinations of Erbitux (IMC-C225) anti-epidermal growth factor receptor (EGFR) antibody, gemcitabine, and radiation. METHODS AND MATERIALS: BxPC-3 and MiaPaCa-2 human pancreatic carcinoma cells were treated in vitro for 24 h with IMC-C225 (5 microg/mL), then exposed to epidermal growth factor (EGF) (10 mM) for 5 min. Immunoblots were screened for EGFR expression and the ability of IMC-C225 to block EGF-induced tyrosine phosphorylation of EGFR. Cells were treated with IMC-C225 (5 microg/mL) on Day 0, the IC(50) dose of gemcitabine on Day 1 for 24 h, followed by 3 Gy 60Co irradiation on Day 2, or the combination of each agent. For cell proliferation, cells were counted on Day 4, and for apoptosis, cells were stained with annexin V-FITC and propidium iodide, then analyzed by FACS. Cells were treated with the same single or multiple treatments and analyzed in a clonogenic cell survival assay. The effect of IMC-C225, gemcitabine, and radiation on the growth of BxPC-3 and MiaPaCa-2 tumor xenografts was determined. Athymic nude mice bearing established s.c. tumor xenografts of 6-8 mm diameter received 6 weeks of treatment with IMC-C225 (1 mg every 3 days x 6) alone or in combination with gemcitabine (120 mg/kg i.v. every 6 days x 6), and 6 weekly fractions of 3 Gy radiation on the days after gemcitabine administration. Tumor growth was measured with Vernier calipers. RESULTS: BxPC-3 and MiaPaCa-2 cell lines expressed low levels of EGFR. IMC-C225 inhibited EGF-induced tyrosine phosphorylation of the EGF receptor on both cell lines. Treatment of cells with a combination of IMC-C225 + gemcitabine + radiation produced the highest induction of apoptosis and inhibition of proliferation in vitro. Combination treatment with IMC-C225, gemcitabine, and radiation produced 100% complete regression of MiaPaCa-2 tumors for more than 250 days, and the greatest growth inhibition of BxPC-3 tumors compared to any single or dual treatments. CONCLUSIONS: The IMC-C225 therapy in combination with gemcitabine chemotherapy and radiation therapy demonstrated statistically significantly greater efficacy over the single and double combination therapies. This form of multimodality treatment shows potential clinical application in the treatment of pancreatic cancer in humans.  相似文献   

2.
In human androgen-independent prostate cancer (PCa), epidermal growth factor receptor (EGFR) regulates angiogenesis, tumor growth, and progression. In this study, we evaluated whether the blockade of EGFR by the anti-EGFR antibody ImClone C225 (IMC-C225) inhibited tumor growth and metastasis by inhibiting angiogenesis, and whether paclitaxel enhanced the results of therapy in androgen-independent PCa. PC-3M-LN4 PCa cells were implanted orthotopically in athymic nude mice and treated with i.p. IMC-C225 (1 mg twice a week) and/or paclitaxel (200 microg once a week). In vitro treatment of PC-3M-LN4 with IMC-C225 inhibited EGFR autophosphorylation without any significant antiproliferative effect. In contrast, in vivo therapy with IMC-C225 alone (P < 0.05) or in combination with paclitaxel (P < 0.005) significantly inhibited PCa growth and metastasis. Serum levels of interleukin (IL) 8 were lower after therapy, and IL-8 mRNA expression was down-regulated within the tumors after therapy. The down-regulation of IL-8 correlated with reduced microvessel density. IMC-C225 reduced tumor cell proliferation, enhanced p27(kip1) expression, and induced tumor and endothelial cell apoptosis. These studies indicate that IMC-C225 has significant antitumor effect in this murine model, mediated in part by inhibition of cellular proliferation and angiogenesis, and by enhancement of apoptosis. The simultaneous administration of paclitaxel enhanced this effect.  相似文献   

3.
Vav1 is one of the signalling proteins normally restricted to hematopoietic cells that results ectopically expressed in solid tumors, including breast cancer. By immunohistochemical analysis on TMAs containing invasive breast tumor from patients without lymph node involvement, we have found that Vav1 is expressed in almost all investigated cancers and shows a peculiar localization inside the nucleus of tumor cells. High amounts of nuclear Vav1 are positively correlated with low incidence of relapse, regardless phenotype and molecular subtype of breast neoplasia. In particular, Kaplan-Meier plots showed an elevated risk of distant metastasis in patients with low Vav1 expression compared with patients with high Vav1 expression in their tumors. Experiments performed with breast tumor-derived cells indicated that Vav1 negatively modulates their invasiveness in vitro and their metastatic efficiency in vivo, possibly by affecting the expression of genes involved in invasion and/or metastasis of breast tumors. Since the high heterogeneity of breast tumors makes difficult to predict the evolution of early breast neoplasias, the evaluation of nuclear Vav1 levels may help in the characterization and management of early breast cancer patients. In particular, Vav1 may serve as a prognostic biomarker and a target for new therapies aimed to prevent breast cancer progression.  相似文献   

4.
PURPOSE: To determine whether an adenoviral vector approach to the augmentation of epidermal growth factor receptor (EGFr) expression results in increased antiproliferative and radiosensitization properties of anti-EGFr antibody therapy in prostate cancer cells. METHODS AND MATERIALS: DU145 and LNCaP human prostate cancer cells were used to test the above question in vitro. An adenoviral vector was utilized to transduce cells with an EGFr transgene (AdEGFr). Immunoblots were performed to measure EGFr expression and EGFr tyrosine phosphorylation. Radiolabeled ligand studies were employed to test binding of epidermal growth factor to EGFr. Scatchard analyses allowed for quantification of the number of EGFrs. Standard immunohistochemistry was performed to assess EGFr expression. Cellular proliferation was assessed after various combinations of treatment. RESULTS: Studies of prostate carcinoma cells infected with AdEGFr demonstrated an increase in EGFr expression. This increase in expression correlated with increased function of EGFr. Specifically, increased EGFr expression also resulted in increased ligand binding, ligand-induced internalization of EGFr, and ligand-induced EGFr tyrosine kinase activity that could be blocked with pre-exposure to IMC-C225 (an anti-EGFr monoclonal antibody). Transduction of the LNCaP cells with AdEGFr did not increase the antiproliferative effects of IMC-C225, but did significantly increase IMC-C225-induced radiosensitization as determined by cell proliferation. CONCLUSIONS: Augmentation of EGFr expression, through an adenoviral vector approach in prostate carcinoma cells, resulted in cells that demonstrated greater IMC-C225-induced radiosensitization compared to cells that were not treated with AdEGFr.  相似文献   

5.
Epidermal growth factor receptor biology (IMC-C225).   总被引:9,自引:0,他引:9  
Treatment of solid tumors despite improved techniques in detection, surgery, radiation therapy, and chemotherapy remains difficult. Therefore, strategies to improve efficacy in accord with safety are needed. Many epithelial cancers have been found to overexpress the receptor to epidermal growth factor (EGFR), including head and neck, breast, colon, lung, prostate, kidney, ovary, brain, pancreas, and bladder. Because overexpression of EGFR has been associated with an overall poor prognosis in patients with cancer, a number of strategies to block or downregulate EGFR have been developed to inhibit tumor proliferation and improve overall clinical outcome. These include monoclonal antibodies to the EGFR, tyrosine kinase inhibitors, ligand-linked toxins, and antisense approaches. Antibodies such as IMC-C225 specifically target EGF receptors, whereas tyrosine kinase inhibition by many small molecules is less specific. Ultimately, IMC-C225 may prove to become a valuable contributor in the treatment of cancer. This report will focus on IMC-C225, a novel monoclonal antibody that targets the EGFR.  相似文献   

6.
With the goal of identifying key factors involved in human breast cancer progression, we applied human cytokine antibody arrays we have developed to screen cytokine expression levels in human breast cancer cell lines and identified interleukin (IL)-8 as a key factor involved in breast cancer invasion and angiogenesis. Elevated expression of IL-8 in breast cancer cells was associated with breast cancer invasiveness and angiogenesis. Neutralization of antibody against IL-8 specifically blocked IL-8-mediated tumor cell invasion and angiogenesis. Furthermore, IL-8 levels in human breast cancer cells were closely related to estrogen receptor (ER) status. ER positive cells expressed low levels of IL-8 whereas ER negative cells expressed high levels of IL-8. Expression of exogenous ERalpha substantially inhibited IL-8 expression. Our findings raise intriguing questions regarding the role of IL-8 in the development and progression of human breast cancer in association with ER status.  相似文献   

7.
BACKGROUND: Pancreatic carcinoma is associated with a poor prognosis, and treatment options for patients with this disease are limited. The epidermal growth factor (EGF) receptor and its ligands are overexpressed in human pancreatic carcinoma and may contribute to the pathophysiology of these tumors. METHODS: The anti-EGF receptor monoclonal antibody IMC-C225 was used to determine the effects of EGF receptor blockade on the growth of human pancreatic carcinoma BxPC-3 cells in vitro. Athymic mice bearing established (200 mm(3)) subcutaneous BxPC-3 xenografts were treated with IMC-C225 (17 or 33 mg/kg every 3 days) alone or in combination with 5-fluorouracil (17 mg/kg twice weekly). RESULTS: IMC-C225 inhibited exogenous ligand-stimulated tyrosine phosphorylation of the EGF receptor on BxPC-3 tumor cells. Treatment of BxPC-3 cells with IMC-C225 inhibited DNA synthesis (23.8%) and colony formation in soft agar (45.6%). IMC-C225 treatment significantly suppressed the growth of BxPC-3 tumors compared with treatment with vehicle alone (P = 0.003). Combination therapy with IMC-C225 and the chemotherapeutic agent 5-fluorouracil enhanced the antitumor effects compared with either agent alone and resulted in regression of pancreatic tumors in several animals. Histologic examination of pancreatic tumors from mice treated with IMC-C225 showed extensive tumor necrosis that coincided with a substantial decrease in tumor cell proliferation and an increase in tumor cell apoptosis. CONCLUSIONS: These data suggest that IMC-C225 affects the growth of pancreatic tumors by inhibiting EGF receptor-dependent proliferation and survival, and demonstrates the potential for therapeutic application of IMC-C225 antibody in the treatment of human pancreatic carcinoma.  相似文献   

8.
Colon carcinomas frequently express the epidermal growth factor receptor (EGFR), and this expression correlates with more aggressive disease and poor prognosis. Previous studies have shown that EGFR blockade by monoclonal antibody IMC-C225 can inhibit the growth of human colon carcinoma tumor cells in vitro and xenografts of these tumors in athymic mice. In this report, we have studied the in vivo activity of IMC-C225 combined with the topoisomerase I inhibitor irinotecan (CPT-11) using two models of human colorectal carcinoma in nude mice. IMC-C225 was tested at a dose of 1 or 0.5 mg administered q3d. CPT-11 was administered at a dose of 100 mg/kg/week or a maximum tolerated dose of 150 mg/kg/week. Treatment with the combination of IMC-C225 (1 and 0.5 mg) and CPT-11 (100 mg/kg) significantly inhibited the growth of established DLD-1 and HT-29 tumors compared with either CPT-11 or IMC-C225 monotherapy (P < 0.05). Combination therapy with IMC-C225 (1 mg) and the MTD of CPT-11 (150 mg/kg) resulted in a regression rate of 100 and 60% of established DLD-1 and HT-29 tumors, respectively. In a refractory tumor model, combined treatment with IMC-C225 and CPT-11 significantly inhibited the growth of CPT-11 refractory DLD-1 and HT-29 tumors, whereas either agent alone did not control tumor growth. Histological examination of treated tumors showed extensive tumor necrosis, decreased tumor cell proliferation, increased tumor cell apoptosis, and a marked decrease in tumor vasculature. These results suggest that EGFR blockade by IMC-C225 combined with topoisomerase I inhibitors may be an effective therapy against chemorefractory colorectal carcinoma tumors.  相似文献   

9.
BACKGROUND AND PURPOSE: The epidermal growth factor receptor (EGFR) is overexpressed in a significant percentage of human malignancies and its expression is associated with tumour aggressiveness and treatment resistance. The monoclonal antibody cetuximab (IMC-C225) blocks the ligand-binding domain of EGFR with high affinity, preventing downstream signalling resulting in tumour growth inhibition. We developed and characterized a novel imaging probe using Oregon Green 488 labelled cetuximab to evaluate its usage as an imaging agent to target EGFR. MATERIALS AND METHODS: Cells with varying expression levels of EGFR or a mutant form of EGFR, called EGFRvIII, were used for in vitro validation. The in vivo binding of labelled cetuximab to EGFR was also assessed ex vivo on tumour material. RESULTS: The development of Oregon Green 488 labelled cetuximab was successful, demonstrating binding to both EGFR and EGFRvIII in vitro. Accumulation was also found in vivo, which was confirmed by histopathology using anti-EGFR antibodies. However, significant mismatch highlights differences between drug delivery in vivo, and cell expression levels of EGFR. CONCLUSIONS: The monoclonal antibody cetuximab represents a promising probe to evaluate the biologic and pharmacokinetic effects of in vivo cetuximab binding to EGFR. It not only visualizes the presence of the wild type EGFR, but also the presence of the mutant EGFRvIII.  相似文献   

10.
Monoclonal antibodies (mAbs) that inhibit activation of the epidermal growth factor receptor (EGFR) have shown therapeutic potential in select malignancies including breast cancer. Here, we describe that combined use of two such mAbs, C225 (Cetuximab) and 425 (EMD55900), reduced growth and survival of EGFR overexpressing MDA-MB-468 breast cancer cells more effectively than either antibody alone. Similarly, the C225/425 antibody combination more effectively inhibited AKT and MAPK phosphorylation in MDA-MB-468 cells. Surface plasmon resonance, size exclusion chromatography and analytical ultracentrifugation demonstrated that mAbs C225 and 425 simultaneously bind to distinct antigenic epitopes on domain III of the soluble wild-type EGFR. Furthermore, neither mAb competed with the other for binding to cells expressing either wild-type EGFR or a mutant EGFR (EGFRvIII) associated with neoplasia. Mutagenesis experiments revealed that residues S460/G461 in EGFR domain III are essential components of the 425 epitope and clearly distinguish it from the EGF/ TGFalpha binding site and the C225 interaction interface. Collectively, these results support the conclusion that therapeutic EGFR blockade in cancer patients by combined use of mAbs C225 and 425 could provide advantages over the use of the two antibodies as single agents.  相似文献   

11.
PURPOSE: Abnormalities in the expression and signaling pathways downstream of the epidermal growth factor receptor (EGFR) contribute to the progression, invasion, and maintenance of the malignant phenotype in human cancers, including those of the head and neck and breast. Accordingly, agents such as the EGFR tyrosine kinase inhibitor (EGFR-TKI) ZD1839 (Iressa) are promising, biologically based treatments that are in various stages of preclinical and clinical development. The process of tumor progression requires, among other steps, increased transformation, directional migration, and enhanced cell survival; this study explored the effect of ZD1839 on the stimulation of c-Src and p21-activated kinase 1 (Pak1), which are vital for transformation, directional motility, and cell survival of cancer cells. EXPERIMENTAL DESIGN: We examined the effect of ZD1839 on biochemical and functional assays indicative of directional motility and cell survival, using human head and neck squamous cancer cells and breast cancer cells. RESULTS: ZD1839 effectively inhibited c-Src activation and Pak1 activity in exponentially growing cancer cells. In addition, ZD1839 suppressed EGF-induced stimulation of EGFR autophosphorylation on Y1086 and Grb2-binding Y1068 sites, c-Src phosphorylation on Y215, and Pak1 activity. ZD1839 also blocked EGF-induced cytoskeleton remodeling, redistribution of activated EGFR, and in vitro invasiveness of cancer cells. CONCLUSIONS: These studies suggest that the EGFR-TKI ZD1839 may cause potent inhibition of the Pak1 and c-Src pathways and, therefore, have potential to affect the invasiveness of human cancer cells deregulated in these growth factor receptor pathways.  相似文献   

12.
Prolactin (PRL) stimulates the cytoskeletal re-organization and motility of breast cancer cells. During PRL receptor signaling, Vav2 becomes phosphorylated and activated, an event regulated by the serine/threonine kinase Nek3. Given the regulatory role of Vav2, the function of Nek3 in PRL-mediated motility and invasion was examined. Overexpression of Nek3 in Chinese hamster ovary transfectants potentiated cytoskeletal re-organization in response to PRL. In contrast, downregulation of Nek3 expression by small-interfering RNA (siRNA) attenuated PRL-mediated cytoskeletal reorganization, activation of GTPase Rac1, cell migration and invasion of T47D cells. In addition, PRL stimulation induced an interaction between Nek3 and paxillin and significantly increased paxillin serine phosphorylation, whereas Nek3 siRNA-transfected cells showed a marked reduction in paxillin phosphorylation. Analysis of breast tissue microarrays also demonstrated a significant up-regulation of Nek3 expression in malignant versus normal specimens. These data suggest that Nek3 contributes to PRL-mediated breast cancer motility through mechanisms involving Rac1 activation and paxillin phosphorylation.  相似文献   

13.
Adhesion of tumor cells to host cell layers and subsequent migration are pivotal steps in cancer invasion and metastasis. The small GTP-binding protein RhoA controls cell adhesion and motility through organization of the actin cytoskeleton and regulation of actomyosin contractility. Cultured rat MM1 hepatoma cells migrate through a mesothelial cell monolayer in vitro in a serum-dependent, RhoA-mediated manner (K. Yoshioka et al., J. Biol. Chem., 273: 5146-5154, 1998). Furthermore, the ROCK family of RhoA-associated serine-threonine protein kinases is involved in this migration, and an inhibitor for these kinases effectively inhibits the invasion of MM1 cells in vitro and in vivo (K. Itoh et al., Nat. Med., 5: 221-225, 1999). Although there have been no reports of genetic alterations directly affecting RhoA in human cancer, the expression level of RhoA in tumors has been several times higher than that of surrounding normal tissue; RhoA was especially highly expressed in the metastatic region. To determine whether RhoA is activated by its overexpression, we made stable transfectants of MM1 cells expressing various levels of wild-type human RhoA. These transfectants showed promoted invasive ability in vitro in the absence and presence of 1-oleoyl-lysophosphatidic acid, marked adherence to the plastic culture dish with scattered shape, elevated phosphorylation of Mr 20,000 myosin light chain, and translocation of RhoA protein from the cytosol to the membrane. All of these phenotypes were similar to those of active RhoA transfectants, correlated with the expression level of RhoA and reversed by the treatment of the cells with Clostridium botulinum exoenzyme C3 ADP-ribosyltransferase. In addition, overexpression of wild-type RhoA in MM1 cells also conferred invasive ability in vivo after the cells were transplanted into the syngeneic rats. Thus, high expression of RhoA in the cell facilitates the translocation of this protein to the membrane, where it is activated, resulting in the stimulation of the RhoA-ROCK-actomyosin system, leading to invasion.  相似文献   

14.
The poor prognosis associated with head and neck squamous cell carcinoma (HNSCC) is primarily due to both local invasion and the regional and/or distant metastatic spread. Recent findings have provided evidence that the acquisition of a motile and invasive phenotype by cancer cells involves the dysregulated function of key intracellular molecular mechanisms together with aberrant signaling events initiated by the surrounding microenvironment. These intrinsic and extrinsic biochemical pathways in turn often converge to stimulate the activity of members of the Rho family of Ras-related guanosine triphosphate (GTP)-binding proteins, including RhoA, Rac and Cdc42, which control the organization of the actin cytoskeleton thereby regulating cell adhesion, polarity and motility. In this study, we examined the status of activation of these GTPases in a representative collection of HNSCC cell lines. Surprisingly, we found that most HNSCC cells exhibit remarkably high levels of GTP-bound Rac1. Further analysis revealed that the activation of Rac1 in these HNSCC cells could be due to two independent signaling events, an epidermal growth factor receptor (EGFR)-based autocrine loop that leads to the activation of the Rac1 exchange factor Vav2 and an EGFR/Vav2-independent pathway that arises as a consequence of the oncogenic mutation of the H-ras proto-oncogene. Indeed, we provide evidence that the EGFR/Vav2/Rac1 axis is a crucial pathway for the acquisition of motile and invasive properties of most HNSCC cells. These findings shed light onto the molecular mechanisms involved in HNSCC cell invasion, and may reveal new therapeutic opportunities to halt the metastatic spread of these aggressive malignancies.  相似文献   

15.
Kim S  Han J  Kim JS  Kim JH  Choe JH  Yang JH  Nam SJ  Lee JE 《Anticancer research》2011,31(11):3767-3773
CD44, the transmembrane receptor for hyaluronan, is implicated in tumor cell invasion and metastasis. The expression of CD44 and its variants is associated with poor prognosis in breast cancer. Here, we investigated the effect of silibinin (a polyphenolic flavonolignan of the herbal plant of Silybum marianum, milk thistle) on the epidermal growth factor (EGF) ligand-induced CD44 expression in human breast cancer cells. The levels of CD44 mRNA and protein expression were greatly increased by EGF and by TGF-α in SKBR3 and BT474 breast cancer cells. In contrast, EGFR ligand-induced CD44 expression was reduced by EGFR inhibitors, AG1478 and lapatinib, respectively. Interestingly, we observed that EGFR ligand-induced CD44 and matrix metalloproteinase-9 (MMP-9) expression was reduced by silibinin treatment in a dose-dependent manner. In addition, silibinin suppressed the EGF-induced phosphorylation of EGFR and extracellular signal-regulated kinase1/2 (ERK1/2), a downstream signaling molecule of EGFR. Therefore, we suggest that silibinin prevents the EGFR signaling pathway and may be used as an effective drug for the inhibition of metastasis of human breast cancer.  相似文献   

16.
Interleukin-6 (IL-6) is a multifunctional cytokine that is associated with the disease status and outcomes of gastric cancer. Nonetheless, the underlying mechanism of how IL-6 promotes the spread of gastric cancer is still unclear. In this study, we used a modified Boyden chamber assay to test the invasion ability of different gastric cancer cell lines. Liposome-mediated transfection was used to introduce an IL-6 expression vector into AGS cells, and the transfectants were further examined for the expression of active RhoA and phosphorylated Src using a pull-down assay and coimmunoprecipitation/Western blot analysis. Furthermore, RhoA expression in gastric adenocarcinoma specimens was investigated immunohistochemically. We documented that IL-6 could promote AGS cell motility and invasiveness, and inhibition of RhoA expression by dominant negative RhoA, C3 transferase, or dominant negative Src expressing plasmids could effectively decrease the invasiveness of IL-6 transfectants. We also documented an interaction between active RhoA and phosphorylated-Src following IL-6 treatment. Gastric cancers displaying high expression of RhoA are highly correlated with aggressive lymph node metastasis, more advanced tumor stage, histologically diffuse type and poorer survival. In conclusion, IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway and RhoA expression could be used as a prognostic factor in patients with gastric adenocarcinoma.  相似文献   

17.
This study was performed to determine the relationship of lysophosphatidic acid (LPA) stimulation and increased Ras homolog A (RhoA) activity to nuclear factor kappa B (NF-kappaB) activity, and the role of these factors in regulating prostate cancer cell invasion. PC-3 high invasive cells demonstrated constitutively increased RhoA, NF-kappaB, and in vitro Matrigel invasion which were further induced by LPA stimulation or transfection with constitutively active RhoA Q63E mutant. LPA treatment rapidly and transiently induced RhoA activity followed by maximally increased DNA binding of NF-kappaB at 1 h and AP-1 at 4 h. The LPA-induced NF-kappaB DNA binding was preceded by transient IkappaBalpha phosphorylation, and decreased total IkappaBalpha levels. Further demonstrating the relationship between RhoA and NF-kappaB activation, PC-3 cells stably transfected with constitutively active RhoA Q63E demonstrated constitutively increased phospho-IkappaBalpha, while PC-3 cells transfected with dominant negative RhoA N19 exhibited decreased phospho-IkappaBalpha levels. The LPA-induced Matrigel invasion and NF-kappaB DNA binding activity were both inhibited by expression of the RhoA inhibitor C3 exoenzyme or dominant negative mutant NF-kappaB inhibitor IkappaBalpha S32/36A. Similarly, transfection with dominant negative IkappaBalpha S32/36A inhibited PC-3 RhoA Q63E cell in vitro invasion. Treatment of PC-3 high invasive and RhoA Q63E cells with sodium salicylate or lactacystin inhibited NF-kappaB and invasion, while pyrrolidine dithiocarbamate (PDTC) treatment of PC-3 high invasive cells inhibited NF-kappaB only. Each inhibitor blocked LPA-induced invasion while PDTC inhibited LPA-induced NF-kappaB and invasion to the greatest extent. These results point to a model where LPA stimulates RhoA and increased PC-3 prostate cancer cell invasion activity through an NF-kappaB-dependent pathway.  相似文献   

18.
The invasive and metastatic transformation of cancers often results in death. However, the mechanisms that promote this transformation remain unclear. Two closely related receptors, the epidermal growth factor receptor (EGFR) and ErbB2, are overexpressed in a significant percentage of breast and prostate carcinomas, among others, with this up-regulated signaling correlating with tumor progression. Previous studies in our laboratory have demonstrated that an EGFR-phospholipase C (PLC)gamma-mediated motility-associated signaling pathway is rate-limiting for tumor cell invasion in vitro and in vivo in one model of prostate carcinoma. Therefore, we investigated whether this PLCgamma signaling pathway also was rate-limiting for invasion in other tumor cell lines and types and whether this EGFR activity is subsumed by the closely related ErbB2. We determined the effects of PLCgamma signal abrogation by pharmacological (U73122) and molecular (expression of the dominant-negative PLCz) means on the in vitro invasiveness of tumor cells. Inhibition of PLCgamma signaling concomitantly decreased invasiveness of de novo-occurring transgenic adenocarcinoma mouse prostate (TRAMP) lines and the human breast cancer cell lines MDA-468 and MDA-231; these lines present up-regulated EGFR signaling. Because the prostate and breast cancer lines usually present autocrine stimulatory loops involving EGFR, we also examined transgenic adenocarcinoma mouse prostate C1 and MDA-468 treated with the EGFR-specific kinase inhibitor PD153035 to determine whether invasiveness is dependent on EGFR signaling. PD153035 reduced invasiveness to levels similar to those seen with U73122, suggesting that the autocrine EGFR stimulatory loop is functioning to promote invasiveness. To determine whether this signaling pathway also promotes invasiveness of ErbB2-overexpressing tumors, we examined the human breast carcinoma line MDA-361; again, U73122 inhibition of PLCgamma decreased invasiveness. In all situations, the inhibition of PLCgamma signaling did not decrease mitogenic signaling. Thus, the motility-associated PLCgamma signaling pathway is a generalizable rate-limiting step for tumor cell progression.  相似文献   

19.
RhoA信号转导通路对乳腺癌细胞Ezrin表达的影响   总被引:1,自引:0,他引:1  
背景与目的:目前研究证实,RhoA在肿瘤发生发展和浸润转移过程中起重要作用,但其具体作用机制尚不完全清楚。Ezrin已经被证实参与了乳腺癌等多种恶性肿瘤的浸润转移过程。本研究初步探讨RhoA信号转导通路对Ezrin表达的调节作用。方法:给予表皮生长因子(epidermal growth factor,EGF)作用MDA-MB-231细胞不同时间后,应用Westernblot方法检测细胞内RhoA、RhoA磷酸化形式及Ezrin蛋白表达的变化情况:给予RhoA激酶特异性抑制剂fasudil预处理后,应用Westernblot方法在RhoA磷酸化和Ezrin蛋白的表达高峰时间检Nz.者的表达情况。结果:给予EGF刺激后,p-RhoA水平逐渐升高,于30min时达高峰:RhoA蛋白的表达无明显变化;Ezrin蛋白水平逐渐升高,于24h时达高峰。用fasudil预处理细胞后,EGF诱导的RhoA磷酸化水平受到明显抑制,抑制率为72.73%;同时Ezrin蛋白的表达水平亦受到明显抑制,抑制率为51.28%。结论:RhoA可能作为Ezrin的上游信号转导途径参与调控乳腺癌细胞的浸润转移。  相似文献   

20.
目的:探讨非受体型酪氨酸磷酸酶SHP 2 介导白细胞介素- 6(interleukin- 6 ,IL- 6)促进人乳腺癌细胞侵袭的作用,以及相应的分子机制。方法:利用外源性重组IL- 6 处理人乳腺癌细胞T 47D ,采用表达IL- 6 的慢病毒感染T 47D 细胞使其内源性表达IL- 6,观察细胞的形态学改变情况,分析细胞迁移和侵袭能力的变化。采用小RNA 干扰的方法下调IL- 6 信号通路中关键分子SHP 2 的表达,观察其表达下降对IL- 6 促进乳腺癌细胞侵袭能力的影响,同时采用Westernblot方法检测Erk1/ 2 磷酸化变化。结果:上调IL- 6 在乳腺癌细胞中的表达显著促进乳腺癌细胞的迁移和侵袭能力,且细胞发生由上皮形态向类成纤维细胞形态的变化,同时伴随着上皮标志性蛋白E-cadherin 表达下调和间质标志Vimentin 表达上调。下调SHP 2 的表达明显抑制IL- 6 诱导乳腺癌细胞的上皮间质转化(epithelialmesenchymaltransition,EMT )和侵袭能力,同时伴随着细胞内Erk1/ 2 磷酸化水平的下降。结论:SHP 2 通过介导IL- 6 诱导的EMT 促进乳腺癌细胞的迁移和侵袭能力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号