首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
BACKGROUND: Olfactory ensheathing cells can promote oriented differentiation and proliferation of neural stem cells by cell-secreted neural factors. OBJECTIVE: To observe the effect of olfactory ensheathing cells on the differentiation and proliferation of neural stem cells. DESIGN, TIME AND SETTING: Cytology was performed at the Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, China, from September 2007 to October 2008. MATERIALS: Mouse anti-nestin polyclonal antibody (Chemicon, USA), mouse anti-glial fibrillary acidic protein (GFAP) IgG1, mouse anti-2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) IgG1, mouse anti-Tubulin Class-Ill IgG1 (Neo Markers, USA), Avidin-labeled Cy3 (KPL, USA), and goat anti-mouse IgGl: fluorescein isothiocyanate (FITC) (Serotec, UK) were used in this study. METHODS:Tissues were isolated from the embryonic olfactory bulb and subependymal region of Wistar rats. Serum-free DMEM/F12 culture media was used for co-culture experiments. Neural stem cells were incubated in serum-free or 5% fetal bovine serum-containing DMEM/F12 as controls. MAIN OUTCOME MEASURES: After 7 days of co-culture, neural stem cells and olfactory ensheathing cells underwent immunofluorescent staining for nestin, tubulin, glial fibrillary acidic protein, and CNPase. RESULTS: Olfactory ensheathing cells promoted proliferation and differentiation of neural stem cells into neuron-like cells, astrocytes and oligodendrocytes. The proportion of neuron-like cells was 78.2%, but the proportion of neurons in 5% fetal bovine serum DMEM/F12 was 48.3%. In the serum-free DMEM/F12, neural stem cells contracted, unevenly adhered to the glassware wall, or underwent apoptosis at 7 days. CONCLUSION: Olfactory ensheathing cells promote differentiation of neural stem cells mainly into neuron-like cells, and accelerate proliferation of neural stem cells. The outcome is better compared with serum-free medium or medium containing 5% fetal bovine serum.  相似文献   

2.
The aim of the present review is to highlight the possible neuroregenerative potential ol adipose-derived stem cells. The key property of stem cells is plasticity including self-renewal, multilineage differentiation, and migration, whereas the required property is transplantability. For a long time, embryonic stem cells were thought to be the only source of pluripotency, a dogma that has been challenged during the last decade. Today, an alternative option might be adipose-derived stem cells, as easily accessible, ethical and autologous cellular source. Recent knowledge of adipobiology increasingly recognizes that adipose tissue is the major endo- and paracrine organ of the human body. Likewise, numerous neuropetides, neurotrophic factors, neurotransmitters, hypothalamic and steroid hormones and their receptors are shared by adipose tissue and brain. Accordingly, the regenerative potential of neuroprotective factor-secreting adipose-derived stem cells is outlined. Whether the possible benefits of adipose stem cell-based therapy may be mediated via cell transdifferentiation and/or paracrine mechanisms remains to further be evaluated.  相似文献   

3.
BACKGROUND: At present, a universal method and vector for transfecting enhanced green fluorescent protein (EGFP) into neural stem cells does not exist. The traditional use of liposome to transfect GFP shows low labeling efficiency and short labeling time. However, there is an increasing number of reports in recent years utilizing adeno-associated virus (AAV) transfection of neural stem cells. OBJECTIVE: To compare differences of neural stem cell transfection via rAAV-2-EGFP or liposome, with regard to transfection efficiency, stability, and safety. DESIGN, TIME AND SETTING: A parallel, controlled experiment at a cellular molecular level was performed in the Central Laboratory, Clinical Neuromedicine Research Center, Tongji Medical College, Huazhong University of Science and Technology, between June 2007 and March 2008. MATERIALS: Liposome 2000 was purchased from Invitrogen, USA; rAAV-2-EGFP was offered from Beijing AGTC Gene Technology, China. METHODS: Cerebral cortical cells from embryonic day 12 C57BL/6 mouse embryo were isolated and cultivated, and the logarithmically growing neural stem cells were divided into three groups. Liposome transfection: neural stem cells were transfected with liposome/EGFP plasmid mixture comprising 2 pg pcDNA-3.0-EGFP plasmid and 12 μg Liposome 2000 in complete culture solution. AAV transfection: neural stem cells were transfected with virus transfection solution comprising rAAV-2-EGFP and complete culture solution at multiplicity of infection = 10^5. Negative control: physiological saline was used instead of virus transfection solution. MAIN OUTCOME MEASURES: At different time points after transfection (36 hours, 1 week, 2 weeks, 1 month, and 6 months), the proportion of green fluorescent cells was quantified under fluorescent microscopy. Transfection efficiency and proliferative activity of the transfected neural stem cells were detected with flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-yl)-3,5-di- phenytetrazoliumremide, respectively. RESULTS: The neural stem cells began to express green fluorescence 36 hours after transfection with rAAV-2-EGFP. Transfection efficiency reached a peak (61.2%) at 1 week, and was higher than the liposome transfection group (38.7%; P 〈 0.05). Green fluorescence was detectable for 6 months, with no weakness of expression, and rAAV-2-EGFP transfection showed no obvious effects on the proliferation activity of neural stem cells. In the liposome transfection group, green fluorescence was observed after 24 hours and reached a peak at 3 days. Fluorescence expression and proliferation activity disappeared at 2 weeks. CONCLUSION: rAAV-2-EGFP transfection of neural stem cells was superior to liposome transfection.  相似文献   

4.
BACKGROUND: A combination of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), human heregulin-beta-1, beta-mercaptoethanol retinoic acid and forskolin has been reported to induce the differentiation of rat bone marrow stromal cells into myelinating Schwann-like cells. OBJECTIVE: To investigate the inducing effects of a combination of bFGF, PDGF, human heregulin-beta-1, beta-mercaptoethanol retinoic acid and forskolin on neural stem cell differentiation by one- and two-step methods. DESIGN, TIME AND SETTING: A cytobiology experiment was performed at the Department of Histology and Embryology, Medical School of Nantong University, and Jiangsu Province Key Laboratory of Neuroregeneration, China, between August 2005 and January 2007. MATERIALS: A total of 30 healthy Sprague Dawley rat embryos at gestational days 14-16 were selected, bFGF, PDGF, human heregulin-beta-t, beta-mercaptoethanol, retinoic acid, and forskolin were purchased from Sigma, USA. METHODS: Passage 3 rat neural stem cells were cultured by a one-step method in serum-free medium plus 10 ng/m/bFGF, 5 ng/mL PDGF, 200 ng/mL heregulin-beta-1,35 ng/mL all-trans retinoic acid, and 5 pmol/L forskolin or by a two-step method in serum-free medium plus 35 ng/m/ all-trans retinoic acid for 72 hours, followed by serum-free medium plus 10 ng/mL bFGF, 5 ng/mL PDGF, 200 ng/mL heregulin-beta-t and 5 μmol/L forskolin. The control condition consisted of 10% fetal bovine serum alone or 20 ng/mL bFGF alone. MAIN OUTCOME MEASURES: Differentiated cells were identified by immunocytochemical staining for microtubule associate protein-2 (MAP2) and St 00 protein. Geometric parameters and sodium ion currents of the differentiated cells were measured by image analysis and whole-cell patch-clamp techniques, respectively. RESULTS: Compared with the two-step culture method, neuronal-like cells exhibited longer processes and a similar appearance to mature neurons using the one-step method. The percentage of MAP2 positive cells induced by the one-step method was significantly greater than the serum-alone group (P 〈 0.05). Furthermore, the MAP2 positive cells induced by the one-step method had greater surface areas, cell body perimeters, and longer process than cells induced by serum-alone and bFGF-alone (P 〈 0.05). There were no significant differences in these parameters between the one-step and two-step methods (P 〉 0.05). In addition, 80% of the induced neuronal-like cells from the one-step method and 20% from the two-step method displayed inwardly-evoked currents. CONCLUSION: The combination of bFGF, PDGF, human heregulin-beta-t, beta-mercaptoethanol retinoic acid and forskolin successfully induced neuronal differentiation from neural stem cells, with the one-step induction being more effective than the two-step method.  相似文献   

5.
There are several major pathological changes in Alzheimer's disease, including apoptosis of cho- linergic neurons, overactivity or overexpression of 13-site amyloid precursor protein cleaving enzyme 1 (BACE1) and inflammation. In this study, we synthesized a 19-nt oligonucleotide targeting BACE1, the key enzyme in amyloid beta protein (AI3) production, and introduced it into the pSilenCircle vector to construct a short hairpin (shRNA) expression plasmid against the BACE1 gene. We transfected this vector into C17.2 neural stem cells and primary neural stem cells, resulting in downregulation of the BACE1 gene, which in turn induced a considerable reduction in reducing AI3 protein production. We anticipate that this technique combining cell transplantation and gene ther- apy will open up novel therapeutic avenues for Alzheimer's disease, particularly because it can be used to simultaneously target several pathogenetic changes in the disease.  相似文献   

6.
BACKGROUND: Overwhelming evidence suggests that tumor bulks are comprised of differentiated tumor cells and cancer stem cells (CSCs). The stem cell-like side-population (SP) cells account for a minor fraction of the total tumor cells, yet are apparently the cells capable of tumor initiation, growth, maintenance, and recurrence. OBJECTIVE: To identify potential stem cell-like cancer cells in a U87 human brain glioma cell line on the basis of dye efflux, clone formation, and multi-drug resistance capacity. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Laboratory of Shanghai Institute of Hematology and Laboratory of Shanghai Institute of Endocrinology in Ruijin Hospital; in vivo contrast observational animal trial was performed at Experimental Animal Center, School of Medicine, Shanghai Jiao Tong University from June 2007 to May 2008. MATERIALS: The U87 cell line was provided by the Shanghai Institute of Cancer Research, Chinese Academy of Science; DMEM/F12 (1 : 1) and fetal bovine serum were purchased from Gibco Invitrogen, USA; human recombinant basic fibroblast growth factors were purchased from BD Bioscience, USA; Hoechst 33342, Verapamil, and methyl thiazolyl tetrazolium were purchased from Sigma, USA; phycoerythrin-labeled anti-human-CD133 was purchased from Milteny Biotec, Germany; SYBR PrimeScriptTM RT-PCR kit was purchased from TaKaRa Biotechnology, Dalian, China. METHODS: Monolayer cultured cells were harvested by 0.25% Trypsin-EDTA and suspended at a 1 ×10^6/mL dilution in PBS containing 2% FBS, and were stained with Hoechst 33342 dye, either alone or in combination with Verapamil. Following fluorescence-activated cell sorting, SP and non-SP subsets were cultivated with serum-containing (DMEM plus 10% fetal bovine serum) or serum-free culture medium [DMEM/F12 (1: 1) + 1× B27 supplement + 10 ng/mL basic fibroblast growth factors + 1× L-glutamine] to determine growth characteristics in vitro. Finally, single free U87 cells and subsets (SP or non-SP cells) were subcutaneously injected into the backs of 5-week-old nude mice for in vivo tumorigenicity. MAIN OUTCOME MEASURES: Cell morphology and clonogenicity were observed under inverted microscope; SP phenotype and fluorescent antibody labeling were analyzed by MoFIoTM flow cytometry; ABC transporter mRNA expression was evaluated by semi-quantitative real-time RT-PCR; efflux capacity for anti-neoplastic drugs from the U87 cell line and subsets was measured with the MTT assay, then detected by enzyme-linked immunosorbent assay at a wavelength of 490 nm; in vivo tumorigenicity in immunodeficient nude mice was evaluated by diameter size. RESULTS: During in vitro passages, human U87 cells maintained a stable SP fraction profile and exhibited the ability to form neurosphere-like clones. SP cell proliferation decreased compared with non-treated U87 cells. CD133 expression was reduced in the SP and non-SP cells. Freshly sorted SP fractions expressed higher levels of ABC drug transporter genes, and exhibited increased potential for cytotoxic drug resistance. The in vivo malignancy of U87 cells was largely dependent on non-SP cells in nude mice, and tumors that formed from the non-SP fraction developed faster and larger compared with tumors from the SP fraction. CONCLUSION: The SP cell component was a key factor that influenced mRNA expression and cytotoxic drug resistance. In particular, cancer stem cells or tumor-initiating cells were not exclusively enriched in the SP subset of the U87 cell line, and non-SP cells were even more tumorigenic.  相似文献   

7.
BACKGROUND: Folic acid is essential for normal functioning of the nervous system. Previous studies have focused on the effects of folic acid on astrocyte proliferation. OBJECTIVE: To explore the effects of folic acid on astrocyte differentiation of neural stem cells (NSCs) and the related mechanisms in vitro. DESIGN, TIME AND SETTING: A randomized, controlled, grouping experiment was performed in Tianjin Medical University between August 2007 and October 2008. MATERIALS: Folic acid and 5-bromo-2-deoxyuridine (BrdU) were obtained from Sigma, MO, USA. Primary antibodies [rabbit anti-rat nestin, β-tubulin-Ⅲ, glial fibrillary acidic protein, and neurogeninl (Ngnl); mouse anti-rat BrdU and β-actin monoclonal antibodies] were purchased from Santa Cruz Biotechnology, USA. METHODS: At 6 days of NSC proliferation from 24-hour-old neonatal rats, BrdU incorporation assay was performed. Seven days after primary culture, NSCs were induced to differentiate with medium containing 5% fetal bovine serum. Cultured NSCs were assigned to three groups: control, low-dose (liquid media with 8 mg/L folic acid), and high-dose folic acid (liquid media with 44 mg/L folic acid). MAIN OUTCOME MEASURES: At day 7 after primary culture, the cells were identified as NSCs by immunocytochemical methods. Double-label immunofluorescence technique for glial fibrillary acidic protein/BrdU detected differentiated cells 7 days after induction. Western blot was used to analyze expression of Ngnl protein in NSCs. RESULTS: In serum-free suspension medium, neurospheres comprised a large number of Nestin-, glial fibrillary acidic protein-, β-tubulin-Ⅲ-, and BrdU-positive cells. Compared with the control group, high-dose folic acid supplementation led to an marked increase in the percentage of glial fibrillary acidic protein/BrdU-positive cells (P 〈 0.05), and significantly decreased Ngnl protein expression (P 〈 0.05). CONCLUSION: Folic acid promotes astrocytic differentiation of NSCs, which might be related to downregulation of Ngnl protein expression.  相似文献   

8.
BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of basic fibroblast growth factor (bFGF)-induced cultures of human amnion-derived mesenchymal stem cells (AMSCs) and differentiation into neuronal-like cells. DESIGN, TIME AND SETTING: Comparative observation. The study was performed at the Laboratory of Microbiology and Immunology, Basic Medical School of Zhengzhou University from January to May 2008. METHODS: Amnia from full-term, uterine-incision delivery were donated by 12 healthy women. AMSCs were obtained by cell separation and culture techniques, and were passaged and induced by bFGF. From the third passage, a total of 1 mLAMSCs, at a density of 1.0 × 10^4/mL, was separately harvested from six samples, which served as group A. A total of 1 mL AMSCs, at a density of 1.0 × 10^4/mL, was harvested separately from the remaining six samples, which served a group B. A total of 0.5 mL from the six samples of group A and 0.5 mL from the six samples of grot, B were combined to form group C. MAIN OUTCOME MEASURES: Differences in cell quantity among the three groups were compare by cell quantification and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Expression of a glial cell marker, neuron-specific enolase, and nestin was detected in the three groups by immunocytochemistry. RESULTS: Cell quantification and MTT analysis of live cells, as well as AMSC absorbance, were significantly greater in group C compared with groups A and B at 18 days of culture (P 〈 0.05), anc no significant difference was observed between groups A and B. Glial fibrillary acidic protein, neuron-specific enolase, and nestin were expressed in all groups following bFGF induction. CONCLUSION: Mixed AMSC cultures promoted proliferation, and bFGF-induced AMSCs differentiated into neuronal-like cells.  相似文献   

9.
10.
骨髓间充质干细胞(bonemarrow—derived mesenchymal stem cells,BMSCs)是骨髓中不同于造血干细胞的一类细胞,其来源丰富,取材简便,易分离、纯化、培养,在一定的条件下可以迅速体外扩增,具有多向分化潜能,可以通过不同的方法被诱导分化成骨细胞、软骨细胞、肌细胞、神经胶质细胞、神经元细胞等,而且它具有低免疫源性,向病变部位迁移的能力,  相似文献   

11.
BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009. MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawiey rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n = 12 for each group). At 2 hours after resuscitation, 5 ×10^8 Feridex-labeled BMSCs, with protamine sulfate as a carrier, and 5 ×10^6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability, and proliferative capacity of BMSCs were measured using MRI, Trypan blue test, and M-IT assay, respectively. Distribution of transplanted cells was observed in rats utilizing MRI and Prussian blue staining prior to and 1, 3, 7, and 14 days after transplantation. RESULTS: Prussian blue staining displayed many blue granules in the Feridex-labeled BMSCs. High density of iron granules was observed in the cytoplasm under electron microscopy. According to MRI results, and compared with the non-labeled group, the signal intensity was decreased in the Feridex-labeled group (P 〈 0.05). The decrease was most significant in the 50 pg/mL Feridex-labeled group (P 〈 0.01). There were no significant differences in celluar viability and proliferation of BMSCs between the Feridex-labeled and non-labeled groups after 1 week (P 〉 0.05). Low-signal lesions were detected in the rat hippocampus and temporal cortex at 3 days after transplantation. The low-signal lesions were still detectable at 14 days, and positively stained cells were observed in the hippocampus and temporal cortex using Prussian blue staining. There were no significant differences in signal intensity in the non-labeled group. CONCLUSION: BMSC transplantation traversed the blood-brain barrier and distributed into vulnerable zones in a rat model of cardiac arrest-induced global brain ischemia. MRI provided a non-invasive method to in vivo dynamically and spatially trace Feridex-labeled BMSCs after transplantation.  相似文献   

12.
BACKGROUND: It has been demonstrated that transforming growth factor-β (TGF-β) and brain- derived neurotrophic factor (BDNF) can induce stem cell differentiation into neuron-like cells. OBJECTIVE: To investigate the efficacy of TGF-β and BDNF at inducing the differentiation of adult rat bone marrow stromal cells (BMSCs) into neuron-like cells, both in combination or alone. DESIGN, TIME AND SETTING: A comparative observation experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University between October 2007 and January 2008. MATERIALS: TGF-~ and BDNF were purchased from Sigma, USA; mouse anti-rat neuron specific enolase, neurofilament and glial fibrillary acidic protein were purchased from Beijing HMHL Biochem Ltd., China. METHODS: BMSCs were isolated from rats aged 4 weeks and incubated with TGF-β(1μ g/L) and/or BDNF (50 μ g/mL). MAIN OUTCOME MEASURES: Expression of neuron-specific enolase, neurofilament and glial fibrillary acidic protein were determined by immunocytochemistry. RESULTS: BMSCs differentiated into neuron-like cells following induction of TGF-β and BDNF, and expressed both neuron-specific enolase and neurofilament. The percent of positive cells was significantly greater in the combination group than those induced with TGF-β or BDNF alone (P 〈 0.01). CONCLUSION: Treatment of BMSCs with a combination of TGF-β and BDNF induced differentiation into neuron-like cells, with the induction being significantly greater than with TGF-β or BDNF alone.  相似文献   

13.
BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model.  相似文献   

14.
BACKGROUND: Biological and morphological characteristics of neural stem/progenitor cells (NSPCs) have been widely investigated. OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy. DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008. MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi Instruments, Japan; transmission electron microscope was provided by JEOL, Japan. METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination. MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres. RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells. CONCLUSION: A large number of autophagosomes were observed in NSPCs and gap junctions were visible between adjacent NSPCs.  相似文献   

15.
BACKGROUND: Human amniotic epithelial cells (HAECs) can differentiate into neurons, astrocytes and oligodendrocytes. They biologically secrete many active neurotrophins and have the capacity to metabolize dopamine enzymes. These features underlie a theoretical basis for the treatment of Parkinson's disease (PD). OBJECTIVE: To investigate the survival and differentiation of transplanted HAECs in the lateral ventricle of PD model rats, and to explore its effect on circling behavior, as well as levels of dopamine (DA), the metabolite homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum. DESIGN, TIME AND SETTING: A randomized, controlled, animal study was performed at the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, and Shanghai Celstar Institute of Biotechnology from May 2007 to December 2008. MATERIALS: HAECs were derived from the placental chorion following caesarean delivery at the Shanghai International Matemal and Child Health Hospital. 6-hydroxydopamine (6-OHDA), and mouse anti-human Vimentin monoclonal antibody were purchased from Sigma, USA; mouse anti-human nestin and tyrosine hydroxylase (TH) monoclonal antibodies were purchased from Chemicon, USA. METHODS: A total of 114 healthy, adult, Sprague Dawley rats were randomly assigned to two groups: PD model [n = 90, stereotactic microinjection of 2 μL 6-OHDA (3.5 μg/uL) into the striatum] and control (n = 24, no treatment). The 51 successful PD model rats were randomly divided into 3 subgroups (n = 17): HAEC, PBS, and model. The HAEC and PBS groups were respectively injected with 10 μL PBS solution containing 1 × 10^5/mL HAECs or 10 pL PBS into the lateral ventricle. The model group was not treated. MAIN OUTCOME MEASURES: TH protein expression in the striatum was evaluated by immunohistochemistry 5 weeks after HAEC transplantation. At 10 weeks, HAEC survival in the lateral ventricle was investigated by immunofluorescent staining; differentiation of HAECs in the lateral and third ventricles was examined by TH immunohistochemistry; concentrations of DA, homovanillic acid, dihydroxyphenyl acetic acid, 5-hydroxyindoleacetic acid, and 5-hydroxytryptamine in the striatum, as well as DA concentration in the cerebrospinal fluid, were measured with high-performance liquid chromatography-electrochemical detection. Circling behavior of PD model rats was consecutively observed for 10 weeks following intraperitoneal injection of amphetamine 1 week after successful model establishment. RESULTS: tn the HAEC group, the number of TH-positive cells significantly increased in the striatum, and circling behavior significantly decreased, compared with the PBS and model groups (P 〈 0.01). In addition, monoamine concentrations in the striatum, as well as DA concentrations in the cerebrospinal fluid, significantly increased, compared with the PBS group (P 〈 0.05-0.01). Moreover, a large number of nestin-, vimentin-, and TH-positive cells were observed in the lateral and third ventricles following HAEC injection.CONCLUSION: HAECs survived for 10 weeks with no overgrowth following transplantation into the lateral ventricle of PD model rats. Moreover, the cells differentiated into dopaminergic neurons, which increased DA secretion. HAEC transplantation improved cycling behavior in PD model rats.  相似文献   

16.
BACKGROUND: Previous studies have shown that propofol enhances proliferation of cultured hippocampal precursor cells in vitro and increases proliferation of cultured hippocampal precursor cells inhibited by corticosterone. Because gamma-aminobutyric acid A (GABA-A) receptor is the functional target for propofol, the proliferative effects of propofol are thought to take place through GABA-A receptor. OBJECTIVE: To determine whether propofol enhances proliferation of rat hippocampal precursor cells inhibited by corticosterone by upregulating expression of GABA-A receptor. DESIGN, TIME AND SETTING: A comparative, observational, in vitro experiment was performed at the Beijing Institute of Pharmacology and Toxicology from April 2005 to April 2006. MATERIALS: Propofol was purchased from AstraZeneca, italy; corticosterone was purchased from Sigma, USA; bicuculline was purchased from Alexis, Switzerland. METHODS: Hippocampal precursor cells were isolated from newborn Wistar rats and cultured in vitro. The second passage of precursor cells was grouped according to the various drugs added to the culture medium: 0.5 μmol/L propofol; 2.5 pmol/L propofol; 100 μmol/L corticosterone; 10 μmol/L bicuculline; 100 μmol/L corticosterone and 0.5 μmol/L propofol; 100 μmol/L corticosterone and 2.5 μmol/L propofol; 100 μmol/L corticosterone, 10 μmol/L bicuculline, and 0.5 μmol/L propofol; 100 μmol/L corticosterone, 10 μmol/L bicuculline, and 2.5 μmol/L propofol; 100 μmol/L corticosterone and 10 pmol/L bicuculline. The cells were cultured for 24 hours with medium containing the respective concentration of drug. The control group consisted of precursor cells absent of drug treatment. MAIN OUTCOME MEASURES: The MTT and ^3H-TdR incorporation assays were used to detect proliferative effects of propofol and bicuculline on cultured rat hippocampal precursor cells inhibited by corticosterone. Immunocytochemistry was used to detect GABA-A receptor expression. Enzyme-linked irnmunosorbent assay was used to quantify GABA-A receptor expression. RESULTS: Propofol, at a concentration of 0.5 and 2.5 μmol/L, increased proliferation of cultured rat hippocampal precursor cells inhibited by corticosterone, while bicuculline antagonized the effects of propofol (P 〈 0.05 or P 〈 0.01 ). Corticosterone (100μmol/L) decreased expression of GABA-A receptor in the hippocampal precursor cells (P〈 0.05), and GABA-A receptor expression was upregulated when propofol (2.5μmol/L) was added to the culture medium (P〈 0.05). CONCLUSION: Low concentrations of propofol increased expression of GABA-A receptor. These results suggest that GABA-A receptor is involved in increased proliferation of cortisone-inhibited rat hippocampal precursor cells in vitro.  相似文献   

17.
BACKGROUND: Differential attachment, chemicals, and immunoaffinity absorption are frequently used to purify olfactory ensheathing cells (OECs). Although purity is high (〉 90%), the complex process, high cost, decreased cell activity, and cell loss limit their application. OBJECTIVE: To purify OECs using differential attachment, cytosine arabinoside (Ara-C), and mitogen stimulation, and to analyze the biological characteristics of OECs. DESIGN, TIME AND SETTING: Molecular biology experiment of cell morphology and immunocytochemistry. The study was performed at the Institute of Neuroscience, Kunming Medical College between January 2005 and January 2007. MATERIALS: N2 was purchased from Gibico, USA; basic fibroblast growth factor (bFGF) from Invitrogen, USA; PCR master mix kit from Fermentas, USA; nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) from Santa Cruz Biotechnology, USA; OEC specific immunological marker NGF receptor (p75NGFR) from ABCAM, UK; immunological markers of oligodendrocyte and Schwann cells, cyclic nucleotide 3' phosphohydrolase (CNPase), from NeoMarkers, USA; inverted fluorescence microscope from Leica, Germany. METHODS: OECs were isolated from olfactory bulbs of mice provided by Institute of Cancer Research (ICR mice) at postnatal 1 2 days, and purified by differential attachment, Ara-C inhibition (5 mg/L), and 10 μg/L mitogen bFGF and 0.5% N2 stimulation. MAIN OUTCOME MEASURES: OEC growth was observed under inverted microscope; cell purity, as well as expression of NGF and BDNF, was determined by means of immunocytochemistry; expression of β-NGF, BDNF, NT-3, platelet-derived growth factor-B (PDGF-B), bFGF, epidermal growth factor (EGF), NGF receptor TrkA, BDNF receptor TrkB, and NT-4 mRNA were detected by RT-PCR. RESULTS: The majority of in vitro cultured OECs was bipolar or tripolar, and purity was estimated to be 〉 92.4%. Immunocytochemistry demonstrated expression of p75NGFR, NGF, BDNF and CNPase. The RT-PCR results suggested that OECs expressed β-NGF, BDNF, NT-3, PDGF-B, bFGF, EGF, TrkA, and TrkB mRNA. CONCLUSION: Results demonstrated that purity of OECs was high, and that OECs expressed CNPase proteins and produced neurotrophic factors.  相似文献   

18.
帕金森病(PD)是常见于中老年人的慢性进行性神经系统退行性疾病,目前虽然有多种方法可用于缓解其症状,如长期药物治疗、外科手术治疗等,但是这些方法因为治疗效果有限、并发症严重而难以推广和应用.近年来应用干细胞移植治疗PD得到了越来越多的关注.因此,本文将就不同类型干细胞的生物学特性,定向诱导分化为多巴胺能神经元的方法,移植治疗PD的基础研究进展和临床探索以厦移植治疗的局限性进行综述,旨在为干细胞移植治疗PD提供科学依据.  相似文献   

19.
BACKGROUND: Tyrosine hydroxylase and phenylethanolamine-n-methyl transferase expression coexist in Purkinje cells of the rat cerebellum. Numerous reports have also been published addressing whether dopamine-beta-hydroxylase (DBH) expression exists in cerebellar Purkinje cells. OBJECTIVE: To investigate the coexistence of DBH and activator protein-2α expression in rat cerebellar Purkinje cells. DESIGN, TIME AND SETTING: A cell morphological study was performed at the Institute of Neuroscience, Chongqing Medical University, China in May 2007. MATERIALS: Ten healthy Wistar rats, of either gender, aged 14 weeks, served as experimental animals. Rabbit anti-mouse DBH, goat anti-mouse activator protein-2α and rabbit anti-mouse β-actin (Santa Cruz Biotechnology, Inc., USA), horseradish peroxidase-labeled goat anti-rabbit IgG, FITC-labeled mouse anti-rabbit IgG, and Cy3-labeled mouse anti-goat IgG (Boster, Wuhan, China), were used in this study. METHODS: Immunohistochemical staining was used to measure the expression of DBH or activator protein-2α, with double-label immunofluorescence being employed to determine coexpression of both, in the cerebellum of 5 randomly selected rats. Western blot assay was utilized to determine the expression of DBH and activator protein-2α in the cerebellum of the remaining 5 rats. MAIN OUTCOME MEASURES: Expression, localization and coexistence of DBH and activator protein-2α in the cerebellum were measured separately. RESULTS: Immunohistochemical staining demonstrated that cerebellar Purkinje cells stained positive for DBH and activator protein-2α. Western blot assay also demonstrated DBH and activator protein-2α expression in the cerebellum. Double-labeling immunofluorescence showed the coexistence of DBH and activator protein-2α in cerebellar Purkinje cells. CONCLUSION: Norepinephrine and activator protein-2α coexist in rat cerebellar Purkinje cells.  相似文献   

20.
BACKGROUND: Studies have shown that cyclooxygenase-2 is associated with proliferation and apoptosis of glioma cells. OBJECTIVE: To investigate the effects of selective cyclooxygenase-2 inhibitor celecoxib on proliferation and apoptosis of C6 glioma cells in vitro. DESIGN, TIME AND SETTING: A cellular, molecular, controlled study was performed at the Central Laboratory and Room of Electron Microscope, Medical School, Xi'an Jiaotong University, China from March 2007 to March 2008. MATERIALS: C6 glioma cells during in vitro log phase were assigned to control and experimental groups. Celecoxib (Pfizer, USA), dimethyl sulfoxide (Sigma, USA), and MTT (Sigma, USA) were used for this study. METHODS: The control group was subdivided into blank control and dimethyl sulfoxide control groups. C6 glioma cells in the blank control and dimethyl sulfoxide control groups were incubated in Dulbecco's modified Eagle's medium supplemented with 10% calf serum and 0.3% dimethyl sulfoxide respectively. C6 glioma cells in the experimental group were separately treated with 60, 80 and 100 μmol/L celecoxib. MAIN OUTCOME MEASURES: Activity of C6 glioma cells was examined by MTT assay. C6 glioma cell cycle and apoptosis were determined by annexin V-fluorescein isothiocyanate/propidium iodide double-staining, followed by flow cytometry. Morphology and ultrastructure of C6 glioma cells were observed with an inverted microscope and a transmission electron microscope, respectively. RESULTS: Compared with the blank control group, cell density was reduced, adherence ability weakened, and irregular nuclei were visible, with the presence of chromatin condensation, margination, and some apoptotic bodies in the experimental group. Activity of C6 glioma cells was significantly decreased (P 〈 0.05), cell number was reduced during S phase, cell number was significantly increased during G2/M phase (P 〈 0.01 ), and the apoptotic rate was significantly increased (P 〈 0.05) in the experimental group. These results were displayed in a dose- and time-dependent fashion. The outcomes were obvious in the 100 IJmol/L celecoxib group following 72 hours of treatment. CONCLUSION: Celecoxib blocked proliferation and induced apoptosis of C6 glioma cells in a dose- and time-dependent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号