首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 213 毫秒
1.
目的 观察转染绿色荧光蛋白(GFP)的大鼠脊髓神经干细胞移植于半横断脊髓损伤处的体内外分化情况.方法 将表达GFP的慢病毒载体转染胎鼠脊髓神经干细胞,体外用10%胎牛血清诱导分化.转染后的神经干细胞与PLGA支架移植于大鼠半横断脊髓损伤处,术后1个月和3个月取材,行GFAP、NF和CNP免疫荧光染色.结果 转染GFP的神经干细胞球表达强烈的绿色荧光,体外分化可见GFAP/GFP、NF/GFP和CNP/GFP双阳性细胞,GFAP/GFP双阳性细胞明显多于其他两种.移植后3个月,GFP阳性细胞在脊髓内明显减少,可见少数GFAP/GFP和CNP/GFP舣阳性细胞,未见NF/GFP双阳性细胞.结论 转染GFP的神经干细胞可在体外增殖和分化,但大部分分化成胶质细胞.移植于急性期脊髓损伤处的神经干细胞不被诱导分化成神经元样细胞,可被诱导分化成神经胶质细胞.  相似文献   

2.
目的 观察神经干细胞与许旺细胞共移植于大鼠半横断脊髓损伤处神经干细胞的迁移、存活、分化及对损伤脊髓的修复作用.方法 绿色荧光蛋白(GFP)标记脊髓神经下细胞后与许旺细胞共移植于大鼠半横断脊髓损伤处,免疫荧光染色和电镜技术分别观察神经下细胞的迁移、存活、分化及新生的髓鞘.皮层运动诱发电位(CMEPs)及BBB评分分别检测大鼠运动功能的恢复.结果 在神经干细胞与许旺细胞共移植组,损伤脊髓的头端、尾端及对侧町见明显的GFP阳性细胞及GaLC/GFP、GFAP/GFP、NSE/GFP、SYN/GFP舣阳性细胞,电镜下新生的髓鞘最多,CMEPs恢复百分率和振幅明显高于其他两组,但BBB评分与神经干细胞单移植组差异无统计学意义.结论 神经干细胞和许旺细胞体内共移植可促进神经干细胞的辽移、存活、分化及脊髓运动功能的恢复.  相似文献   

3.
背景:研究表明神经干细胞和神经营养因子3基因修饰的神经细胞联合移植能够在移植后存活并有效促进脊髓横断后脊髓的功能恢复,但神经营养因子3基因修饰的神经干细胞能否在脊髓受损部位发挥功能并促进脊髓损伤大鼠的功能恢复? 目的:观察神经营养因子3基因修饰胚胎脊髓神经干细胞移植后脊髓损伤大鼠的功能恢复情况及损伤局部的基因表达。 方法:将30只SD大鼠在T9水平进行脊髓半切后,随机分为3组,分别在受损脊髓内植入细胞培养液、神经干细胞及神经营养因子3基因修饰神经干细胞。另取10只仅行椎板切除设置为空白对照。移植后通过行为学测试评价脊髓功能的恢复,RT-PCR和Western blot检测脊髓损伤部位神经营养因子3和髓鞘碱性蛋白的表达。 结果与结论:移植神经营养因子3基因修饰神经干细胞组行为学测试结果最好,移植细胞培养液组行为学测试最差。与移植细胞培养液组相比,移植神经干细胞及神经营养因子3基因修饰神经干细胞组大鼠脊髓组织中神经营养因子3基因和髓鞘碱性蛋白基因的mRNA水平明显上调,在蛋白水平也有类似的结果,且神经营养因子3基因修饰神经干细胞组效果更明显。提示移植神经营养因子3基因修饰神经干细胞能促进脊髓受损部位出现更多向少突胶质细胞分化的细胞,并能更强的表达神经营养因子3。  相似文献   

4.
背景:多项研究已证实神经干细胞能促进脊髓损伤大鼠神经功能的恢复,但其分子机制还不清楚。 目的:观察神经干细胞移植对脊髓全横断损伤大鼠大脑运动皮质相关凋亡基因Bax,Bcl-2和Caspase-3 mRNA表达的影响。 设计、时间及地点:随机对照动物实验,于2007-07/2008-12在昆明医学院神经科学研究所完成。 材料:孕14~15 d绿色荧光蛋白转基因鼠5只,取其胚胎用于神经干细胞培养。清洁级健康成年雌性SD大鼠88只,随机分成3组:假手术组8只、模型组40只、细胞移植组40只。 方法:模型组、细胞移植组大鼠建立T9脊髓全横断脊髓损伤模型,假手术组只行T8椎板切除。用DMEM/F12调整胎鼠神经干细胞密度为2×1010 L-1,吸取细胞悬液15 μL滴加到约2 mm3大小的明胶薄片上,细胞移植组将此明胶薄片植入大鼠脊髓两横断面之间的间隙处。分别于细胞移植后3,7,14,21,28 d取材进行指标检测。 主要观察指标:RT-PCR法检测大脑运动皮质Bax,Bcl-2和Caspase-3 mRNA表达的变化。 结果:与假手术组比较,模型组各时间点Bax的表达均无明显差异(P > 0.05),术后14,28 d Bcl-2的表达明显减少(P < 0.05),术后3 d Caspase-3的表达明显升高(P < 0.05)。与模型组比较,细胞移植组在神经干细胞移植后3 d Bax的表达明显减少(P < 0.05),移植后14,21 d Bcl-2的表达明显增高(P < 0.05),移植后3,7 d Caspase-3的表达明显减少(P < 0.05)。 结论:神经干细胞移植后,可能通过调控大脑运动皮质相关凋亡基因 Bax,Bcl-2和Caspase-3 mRNA的表达促进大鼠全横断脊髓损伤修复。  相似文献   

5.
目的:由胚胎干细胞分化的神经细胞移植能够在一定程度上恢复脊髓损伤模型动物的功能,此发现使胚胎干细胞成为一种用于移植学研究的重要工具。观察经NT3基因转染修饰的小鼠MESPU35(ES-NT3)胚胎干细胞株移植对脊髓损伤动物脊髓结构和功能重建的恢复效果。 方法:实验于2004-09/12 在解放军第三军医大学组织胚胎学教研室实验室完成。①材料:清洁级成年Wistar大鼠36只,随机数字表法分为模型对照组、未转染细胞移植组、基因转染细胞移植组,12只/组,实验过程中对动物的处置符合动物伦理学标准。移植所用MESPU35细胞株和ES-NT3细胞株均由本室冻存。②实验方法:复苏MESPU35和ES-NT3细胞株,采用经典维甲酸4-/4+法诱导两种胚胎干细胞神经定向分化,收集分化9 d后的细胞,调整细胞终浓度至5×1010 L-1备用。各组大鼠均建立L4 脊髓损伤模型,在脊髓完全横断后10 min内,基因转染细胞移植组分多点缓慢注入ES-NT3胚胎干细胞悬液, 2 μL/点,细胞总数约4×105个,注射位置为损伤区域白质与灰质交界处;未转染细胞移植组同法注射MESPU35胚胎干细胞悬液,模型对照组注射等量生理盐水。③实验评估:各组大鼠分别于术前、术后即刻、术后15 d和30 d进行后肢运动功能Tarlov评分检测,分数越低表示运动功能恢复越差。后肢运动功能检测30 min后进行斜板实验,检测大鼠抓握和维持姿势能力。微型注射器将25%的辣根过氧化物酶2μL注入大鼠坐骨神经内,2 d后取L1~L4脊髓常规冰冻切片,参照Mesulam法进行过氧化物酶逆行追踪。 结果:因细菌感染,模型对照组、未转染细胞移植组、基因转染细胞移植组各死亡2只、1只、2只。①后肢运动功能检测:各组大鼠术后即刻后肢运动功能评分为0。术后15 d,30 d与模型对照组比较,未转染细胞移植组后肢运动功能评分升高(P < 0.01),但未达到正常水平;基因转染细胞移植组恢复程度最高,后肢运动功能评分基本接近正常水平,明显高于未转染细胞移植组(P < 0.05)。②斜板试验:与后肢运动功能检测结果基本相似。③辣根过氧化物酶逆行追踪情况:模型对照组未见阳性神经元。术后30 d基因转染细胞移植组阳性神经元增至最多,脊髓结构恢复情况优于未转染细胞移植组。 结论:经NT3基因转染修饰的鼠MESPU35胚胎干细胞向神经定向诱导分化后,移植治疗脊髓损伤大鼠能更好地促进脊髓功能恢复和结构重建。  相似文献   

6.
高压氧联合神经干细胞移植治疗大鼠脊髓损伤   总被引:1,自引:0,他引:1  
背景:单纯神经干细胞移植已应用于对受损脊髓组织的修复。 目的:以神经干细胞移植同时应用高压氧治疗大鼠脊髓损伤,观察联合作用对脊髓损伤大鼠运动功能恢复的影响。 方法:雌性SD大鼠60只,以半切法制成胸段脊髓半横断大鼠模型。随机分成单纯损伤组、神经干细胞移植组及高压氧治疗组,每组20只。伤后第4周取材行病理切片苏木精-伊红染色及BrdU免疫组织化学染色,第8周取材行辣根过氧化物酶示踪,透射电镜观察轴突的再生情况,通过体感诱发电位观察神经电生理恢复情况。造模后1,2,4,6,8周进行BBB评分和斜板实验等运动功能检测。 结果与结论:观察伤后4周病理切片,单纯损伤组未见神经轴索通过,神经干细胞移植组可见少量神经轴索样结构,高压氧治疗组可见较多神经轴索样结构。BrdU的阳性细胞数及辣根过氧化物酶阳性神经纤维数,高压氧治疗组最多,神经干细胞移植组次之,单纯损伤组最少,且各组之间差异有显著性意义(P < 0.05)。透射电镜下神经干细胞移植组、高压氧治疗组正中横断面可见新生的无髓及有髓神经纤维。高压氧治疗组大鼠体感诱发电位的潜伏期短于神经干细胞移植组,波幅高于神经干细胞移植组(P < 0.05),明显优于单纯损伤组(P < 0.01)。伤后4周神经干细胞移植组、高压氧治疗组大鼠后肢运动功能均有较明显恢复,高压氧治疗组较神经干细胞移植组恢复快(P < 0.05);单纯损伤组亦有所恢复,但程度较轻。提示神经干细胞移植对于脊髓损伤大鼠后肢功能的恢复有促进作用,联合应用高压氧有协同效果。  相似文献   

7.
目的:探讨神经干细胞移植对脊髓损伤大鼠后肢运动功能修复的影响。方法:SD大鼠36只,制成T10脊髓全横断损伤模型。于造模成功后1周采用局部微量注射法移植。随机分三组:A损伤对照组(n=12)仅打开椎管暴露脊髓;B移植对照组(n=12):注射10μl DMEM/F12培养液;C细胞移植组(n=12):移植1.0?06/ml的神经干细胞悬液10μl。移植后通过不同时间点BBB行为评分、病理组织学、免疫荧光技术评价大鼠大鼠脊髓功能修复情况及移植细胞在体内的存活、迁移、分化。 结果:在体外成功建立SD大鼠海马源性神经干细胞培养体系;B、C两组大鼠随着时间延长BBB评分均不同程度提高,从移植后2W起C组大鼠评分明显高于B组,两组比较差异有统计学意义(P<0.05);神经干细胞移植后能够在体内继续存活、迁移并且分化为NF-200、GFAP表达阳性的神经元及星形胶质细胞。 结论:神经干细胞移植治疗脊髓损伤是一种有效的方法。  相似文献   

8.
摘要 背景:传统观念认为,神经组织损伤后几乎不能再生,以往对SCI的治疗缺乏有效手段,致使本病致残率高,疗效差。干细胞治疗关键在于移植具有再生能力的干细胞,通过多种作用机制,可以重建中枢神经系统的结构和功能,近年来引起了广泛的关注。 目的:探讨立体定向移植骨髓间充质干细胞(MSCs)对大鼠脊髓损伤修复的影响并探讨其机制 设计、时间及地点:随机对照动物实验,于2007-10/2008-6在天津市环湖医院完成。 材料:1月龄SD大鼠20只,用于制备骨髓间充质干细胞;健康成年Wistar大鼠45只,雌性、同系,体质量280±20 g。将动物随机分为对照组、假手术组与移植组,每组各15只。 方法:密度梯度离心法结合贴壁筛选法分离骨髓间充质干细胞,经流式细胞仪鉴定为MSCs。以动脉瘤夹夹闭法制备大鼠脊髓损伤(SCI)模型,在SCI大鼠致伤后第7天,通过立体定向途径移植MSCs到移植组大鼠脊髓损伤中心,移植等量生理盐水至假手术组大鼠脊髓损伤中心,对照组大鼠不做处理。 主要观察指标:SCI大鼠损伤前及损伤后第7天、14天、30天、60天、90天的BBB评分;损伤后第90天处死大鼠,观察其脊髓组织中有无BrdU阳性细胞、Brdu+NSE、Brdu+GFAP、Brdu+bFGF、Brdu+BDNF免疫组化双染阳性细胞并观察NSE、GFAP、bFGF、BDNF单染阳性细胞。 结果: ①BBB评分发现,MSCs移植组大鼠BBB后肢功能评分恢复优于对照组(p<0.05);假手术组BBB评分在损伤后30天内恢复速度慢于对照组(p<0.05),至第90天与对照组比较无显著差异(P>0.05);②免疫组织化学染色发现,移植组大鼠脊髓内在损伤中心及头、尾端距离脊髓损伤中心1cm处均可见BrdU染色阳性细胞及Brdu+NSE、Brdu+GFAP、Brdu+bFGF、Brdu+BDNF免疫组化双染阳性细胞。移植组NSE、GFAP、bFGF、BDNF单染阳性细胞数明显高于对照组和假手术组(p<0.05)。 结论: MSCs移植可以促进SCI大鼠的神经功能的恢复,其机制可能与移植细胞分化为神经元样和神经胶质细胞样细胞,并分泌或促进宿主分泌神经营养因子有关。 关键词 脊髓损伤 骨髓间充质干细胞 立体定向 细胞移植  相似文献   

9.
BDNF基因修饰神经干细胞移植治疗脊髓损伤的实验研究   总被引:5,自引:0,他引:5  
目的研究BDNF基因修饰神经干细胞移植对脊髓损伤后神经细胞凋亡的影响。方法采用电控大鼠脊髓损伤打击装置制作大鼠脊髓损伤模型。120只SD大鼠随机分为4组:假手术组(Sham组),脊髓损伤组(SCI组),神经干细胞组(NSC组),BDNF基因修饰神经干细胞组(NSC-BDNF组)。通过免疫组化法检测大鼠脊髓BDNF、Bax、Bcl-2的表达,流式细胞仪检测大鼠脊髓细胞凋亡率。结果NSC-BDNF组中BDNF免疫阳性细胞光密度值较NSC、SCI组增加明显(P<0.05),表达时间及表达高峰延长,且Bcl-2的表达较其他组在各个时间点上均增高(P<0.05),而Bax的表达较其他组在各个时间点上均降低(P<0.05),凋亡率亦明显低于NSC和SCI组(P<0.01)。结论BDNF基因修饰神经干细胞移植可引起BDNF在损伤脊髓内有效表达,且明显的促进了脊髓损伤后Bcl-2的高表达,抑制了Bax的表达,从而降低了神经细胞的凋亡率。  相似文献   

10.
背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚。 目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径。 方法:运用改良Allen法制备T10脊髓外伤性截瘫大鼠模型,假手术组6只,脊髓损伤组24只随机分为对照组和骨髓间充质干细胞移植组。骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL。 结果与结论:脊髓损伤后损伤局部的脑源性神经营养因子、神经生长因子表达增加,骨髓间充质干细胞静脉注射移植后能促进脊髓损伤局部脑源性神经营养因子、神经生长因子更进一步的表达,这可能是促进神经结构及神经功能恢复的因素之一。  相似文献   

11.
摘要 目的 研究腺病毒载体Ad-BDNF -EGFP的构建及在神经干细胞(NSCs)中的表达。方法 通过RT-PCR从在大鼠的海马中获得BDNF基因,通过基因克隆以及HEK293包装,获得了含增强绿色荧光蛋白(EGFP)基因的重组腺病毒表达载体pAd-BDNF-EGFP,将其感染原代培养的神经干细胞,观察EGFP及BDNF两种基因的表达,镜下测定转染率,并检测RT-PCR产物,证实BDNF的存在。转染后的神经干细胞经G418筛选,抗性细胞传代扩增后获得成功转染BDNF基因的NSCs克隆。结果 荧光显微镜下可见感染后的NSCs表达EGFP而发出绿色荧光;通过RT-PCR证明感染后的NSCs具有表达BDNF的能力;用ELISA鉴定细胞上清中分泌的BDNF, 72h的含量达到最高值,为12.78ng/ml;证明通过构建病毒的感染可以使神经干细胞获得分泌BDNF的能力,且EGFP基因可作为神经干细胞移植研究中良好的示踪剂。结论 腺病毒病毒介导EGFP基因及BDNF基因在大鼠胚胎神经干细胞中成功表达,为应用以神经干细胞直接作为基因靶细胞,介导基因治疗中枢神经系统疾病莫定了基础。  相似文献   

12.
Li W  Cai WQ  Li CR 《神经科学通报》2006,22(1):34-40
Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunoeytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed. Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.  相似文献   

13.
Objective To explore repair of spinal cord injury by neural stem cells (NSCs) modified with brain derived neurotrophic factor (BDNF) gene (BDNF-NSCs) in rats. Methods Neural stem cells modified with BDNF gene were transplanted into the complete transection site of spinal cord at the lumbar 4 (L4) level in rats. Motor function of rats' hind limbs was observed and HE and X-gal immunocytochemical staining, in situ hybridization, and retrograde HRP tracing were also performed, Results BDNF-NSCs survived and integrated well with host spinal cord. In the transplant group, some X-gal positive, NF-200 positive, GFAP positive, BDNF positive, and BDNF mRNA positive cells, and many NF-200 positive nerve fibers were observed in the injury site. Retrograde HRP tracing through sciatic nerve showed some HRP positive cells and nerve fibers near the rostral side of the injury one month after transplant and with time, they increased in number. Examinations on rats' motor function and behavior demonstrated that motor function of rats' hind limbs improved better in the transplant group than the injury group. Conclusion BDNF-NSCs can survive, differentiate, and partially integrate with host spinal cord, and they significantly ameliorate rats' motor function of hind limbs, indicating their promising role in repairing spinal cord injury.  相似文献   

14.
15.
Objective: Discuss the molecular mechanism for improving neural regeneration after repair of sciatic nerve defect in rat by acellular nerve allograft (ANA). Methods: Randomly divide 36 Wistar rats into six groups as normal control group, autografting group, and bridging groups of 2, 4, 8, 12 weeks, six rats for each group. Observe the expression of brain‐derived neurotrophic factor (BDNF) in L4 spinal cord and anterior tibial muscle at the injury site, calcitonin gene‐related peptide (CGRP) protein as well as mRNA, respectively. 12w after operation, histopathological observation was performed. Results: 2w after ANA bridging the sciatic nerve defect in rats, it was observed that the expression level of BDNF in spinal cord at the injury site and CGRP protein increased, reaching the peak level at 4w, lasting till 8w, then decreased but still significantly higher than that in normal control group at 12w, and was not significantly different compared with that in autografting group. However, the expression level of BDNF in anterior tibial muscle decreased gradually within the initial 4w, then increased progressively, reaching normal level at 12w, and was not significantly different compared with that in autografting group. The expression of BDNF mRNA and CGRPmRNA was essentially the same. 12w after operation, there was nerve regeneration in bridging group of 12w and autografting group. Conclusions: ANA possessed fine histocompatibility, and might substitute autograft to repair long‐segment defect of sciatic nerve in rats. This action might be related to upregulation of protein and mRNA expression for BDNF and CGRP in spinal cord. Synapse, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 10 6 ) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.  相似文献   

17.
背景:如何促进周围神经损伤修复与再生一直是基础与临床研究的热点。基因治疗有可能成为今后解决该问题的主要手段之一。 目的:观察携带小鼠脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) cDNA表达片段的重组腺病毒载体AxCA-BDNF转染大鼠损伤坐骨神经后BDNF的表达,以及脊髓前角运动神经元的存活和神经生长情况。 方法:切除成年Wistar大鼠股中部10 mm长的坐骨神经,AxCA-BDNF转染组、BDNF组和对照组分别用硅胶管内置AxCA-BDNF原液,BDNF溶液或空白病毒稀释液桥接坐骨神经两断端。术后3,7,14 d,1,2,4个月应用原位杂交和免疫组织化学方法检测损伤坐骨神经及相应脊髓节段BDNF mRNA和蛋白的表达,并观察损伤坐骨神经的组织学及超微结构改变,再生的神经元及有髓神经纤维数目和髓鞘厚度。 结果与结论:术后3,7,14 d及1个月时,AxCA-BDNF转染组损伤坐骨神经近、远端神经干及脊髓(L3~6)中BDNF mRNA和蛋白水平明显高于BDNF组和对照组(P < 0.01)。光、电镜病理组织学检查和图像分析证实,BDNF基因转染后,脊髓前角运动神经元存活数量、新生神经纤维数目及其髓鞘厚度、神经联接的再形成均明显优于对照组(P < 0.01)。说明经腺病毒介导转染的BDNF基因可在大鼠坐骨神经内有效表达,并通过轴突逆行转运到了相应的脊髓神经元,不仅能促进损伤神经纤维再生,也能保护损伤的脊髓神经元。 关键词:坐骨神经损伤;重组腺病毒;脑源性神经营养因子;基因转染;免疫组织化学;原位分子杂交;神经再生  相似文献   

18.
The protective effects of erythropoietin on spinal cord injury have not been well described. Here, the eukaryotic expression plasmid pc DNA3.1 human erythropoietin was transfected into rat neural stem cells cultured in vitro. A rat model of spinal cord injury was established using a free falling object. In the human erythropoietin-neural stem cells group, transfected neural stem cells were injected into the rat subarachnoid cavity, while the neural stem cells group was injected with non-transfected neural stem cells. Dulbecco's modified Eagle's medium/F12 medium was injected into the rats in the spinal cord injury group as a control. At 1–4 weeks post injury, the motor function in the rat lower limbs was best in the human erythropoietin-neural stem cells group, followed by the neural stem cells group, and lastly the spinal cord injury group. At 72 hours, compared with the spinal cord injury group, the apoptotic index and Caspase-3 gene and protein expressions were apparently decreased, and the bcl-2 gene and protein expressions were noticeably increased, in the tissues surrounding the injured region in the human erythropoietin-neural stem cells group. At 4 weeks, the cavities were clearly smaller and the motor and somatosensory evoked potential latencies were remarkably shorter in the human erythropoietin-neural stem cells group and neural stem cells group than those in the spinal cord injury group. These differences were particularly obvious in the human erythropoietin-neural stem cells group. More CM-Dil-positive cells and horseradish peroxidase-positive nerve fibers and larger amplitude motor and somatosensory evoked potentials were found in the human erythropoietin-neural stem cells group and neural stem cells group than in the spinal cord injury group. Again, these differences were particularly obvious in the human erythropoietin-neural stem cells group. These data indicate that transplantation of erythropoietin gene-modified neural stem cells into the subarachnoid cavity to help repair spinal cord injury and promote the recovery of spinal cord function better than neural stem cell transplantation alone. These findings may lead to significant improvements in the clinical treatment of spinal cord injuries.  相似文献   

19.
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号