首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.  相似文献   

2.
Clinical observations suggest that antipsychotic effect starts early and increases progressively over time. This time course of antipsychotic effect can be captured in a rat phencyclidine (PCP)-induced hyperlocomotion model, as repeated antipsychotic treatment progressively increases its inhibition of the repeated PCP-induced hyperlocomotion. Although the neural basis of acute antipsychotic action has been studied extensively, the system that mediates the potentiated effect of repeated antipsychotic treatment has not been elucidated. In the present study, we investigated the neuroanatomical basis of the potentiated action of haloperidol (HAL) and clozapine (CLZ) treatment in the repeated PCP-induced hyperlocomotion. Once daily for five consecutive days, adult Sprague-Dawley male rats were first injected with HAL (0.05 mg/kg, sc), CLZ (10.0 mg/kg, sc) or saline, followed by an injection of PCP (3.2 mg/kg, sc) or saline 30 min later, and motor activity was measured for 90 min after the PCP injection. C-Fos immunoreactivity was assessed either after the acute (day 1) or repeated (day 5) drug tests. Behaviorally, repeated HAL or CLZ treatment progressively increased the inhibition of PCP-induced hyperlocomotion throughout the five days of drug testing. Neuroanatomically, both acute and repeated treatment of HAL significantly increased PCP-induced c-Fos expression in the nucleus accumbens shell (NAs) and the ventral tegmental area (VTA), but reduced it in the central amygdaloid nucleus (CeA). Acute and repeated CLZ treatment significantly increased PCP-induced c-Fos expression in the ventral part of lateral septal nucleus (LSv) and VTA, but reduced it in the medial prefrontal cortex (mPFC). More importantly, the effects of HAL and CLZ in these brain areas underwent a time-dependent reduction from day 1 to day 5. These findings suggest that repeated HAL achieves its potentiated inhibition of the PCP-induced hyperlocomotion by acting on the NAs, CeA and VTA, while CLZ does so by acting on the mPFC, LSv and VTA.  相似文献   

3.
NoncompetitiveN-methyl- -aspartate (NMDA) receptor antagonists, including ketamine and phencyclidine (PCP), produce abnormal intracellular vacuoles in posterior cingulate and retrosplenial cortical neurons in the rat. Ketamine also induces 70-kDa heat shock protein (HSP70) expression in pyramidal neurons in the posterior cingulate and retrosplenial cortex and, as shown by this study, activates microglia in the retrosplenial cortex of the rat. Whereas HSP70 protein expression was induced with ketamine doses of 40 mg/kg (ip) and higher, doses of 80 mg/kg and higher were required to activate microglia. HSP70-positive neurons were observed in 30- to 90-day-old rats but not in younger, 10- to 20-day-old animals following ketamine (80 mg/kg, ip). Pretreatment with the antipsychotic drug haloperidol at doses of 1.0 mg/kg and above abolished all HSP70 immunostaining produced by ketamine (80 mg/kg). However, a single dose of haloperidol (5 mg/kg, im) did not decrease the number of microglia activated in retrosplenial cortex by ketamine (80–140 mg/kg). Similarly, PCP (10 and 50 mg/kg, ip)-induced microglial activation in the posterior cingulate and retrosplenial cortex of adult rats was not blocked by haloperidol (10 mg/kg, im, 1 h prior to PCP). These results suggest that ketamine and PCP injure neurons in the posterior cingulate and retrosplenial cortex of adult rats. Though haloperidol may afford some protection against this injury since it inhibits induction of HSP70 expression, the failure to prevent microglial activation suggests that single doses of haloperidol do not completely protect neurons from NMDA antagonist toxicity.  相似文献   

4.
Typical and atypical antipsychotics, the mainstay of schizophrenia pharmacotherapy, have been demonstrated to affect differently neuronal gene expression in several preclinical paradigms. Here we report the differential gene expression of the glutamatergic post-synaptic density proteins Homer and PSD-95 in rat forebrain following acute haloperidol or olanzapine treatment. Moreover, considering the extensive interactions between dopaminergic and opioidergic systems we also measured striatal preproenkephalin mRNA. Male Sprague-Dawley rats were treated with haloperidol 1 mg/kg or olanzapine 0.5 mg/kg or vehicle, i.p. and sacrificed 3 h after the injection. Homer gene expression was significantly increased in caudate putamen and nucleus accumbens of rats treated with haloperidol and in the core of accumbens of rats treated with olanzapine. No changes were detected for Homer in prefrontal and parietal cortex in any of the experimental groups. PSD-95 gene expression was not modulated in our paradigm by administration of either typical or atypical antipsychotics. These results (1) suggest a differential modulation of Homer by typical and atypical antipsychotics; (2) confirm that Homer can be induced as an early gene with putative direct effect on neuronal plasticity and (3) demonstrate different response to antipsychotics by different classes of postsynaptic density proteins at glutamatergic synapses.  相似文献   

5.
Using quantitative in situ hybridization, this study examined regional changes in rat brain mRNA levels encoding neuropeptide Y (NPY) following olanzapine, clozapine and haloperidol administration (1.2, 1.5 and 2.0 mg/kg, oral) for 36 days. The NPY mRNA expression levels and patterns were examined after the last drug administration at both time points enabling the measurement of immediate effect at 2h and the effects after 48 h of drug administration. It was found that all these drugs had an immediate effect on NPY mRNA expression, while virtually all these changes normalized 48 h after the drug treatments. A similarity in altered NPY mRNA expression patterns was seen between the olanzapine and clozapine groups; however, haloperidol was very different. Olanzapine and clozapine administration decreased NPY mRNA levels in the nucleus accumbens, striatum and anterior cingulate cortex (from -60% to -77%, p<0.05). Haloperidol decreased NPY mRNA expression in the amygdala and hippocampus (-69%, -64%, p<0.05). In the lateral septal nucleus, NPY mRNA levels significantly decreased in the olanzapine group (-66%, p<0.05), a trend toward a decrease was observed in the clozapine group, and no change was found in the haloperidol treated group. These results suggest that the different effects of atypical and typical antipsychotics on NPY systems may reflect the neural chemical mechanisms responsible for the differences between these drugs in their effects in treating positive and negative symptoms of schizophrenia. The immediate decrease of NPY mRNA levels suggests an immediate reduction of NPY biosynthesis in response to these drugs.  相似文献   

6.
Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P < 0.05) and dentate gyrus (P < 0.01) regions compared with vehicle control. In contrast, the atypical antipsychotic agents clozapine (10 mg/kg) and olanzapine (2.7 mg/kg) up-regulated BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P < 0.01). These findings demonstrate that the typical and atypical antipsychotic drugs differentially regulate BDNF mRNA expression in rat hippocampus.  相似文献   

7.
The effect of antipsychotic treatment on basal and phencyclidine (PCP)-induced heat shock protein-70 (hsp70) mRNA expression was studied in the rat striatum and in the prefrontal cortex. Abaperidone, a novel drug with an atypical antipsychotic profile, was compared, at pharmacologically equivalent doses, with the atypical antipsychotics clozapine and risperidone and also with haloperidol, a classical antipsychotic. Abaperidone and clozapine reduced basal hsp70 mRNA expression in the rat striatum and in the prefrontal cortex. No change in either region was found after haloperidol, whereas risperidone reduced hsp70 mRNA in the striatum but not in the prefrontal cortex. The N-methyl-D-aspartate (NMDA) receptor antagonist PCP significantly elevated hsp70 mRNA levels in the prefrontal cortex, an elevation that was potentiated by haloperidol and prevented by all of the atypical antipsychotics tested. Since hsp70 has been associated to some schizophrenia symptoms, we suggest that reduced hsp70 in the prefrontal cortex, a cortical area that plays a critical role in the etiology of many schizophrenia symptoms, may be linked to an atypical profile of antipsychotics, such as clozapine, and possibly also abaperidone.  相似文献   

8.
BACKGROUND: The muscarinic agonist xanomeline has been shown to reduce antipsychotic-like behaviors in patients with Alzheimer's disease. Because atypical antipsychotic agents increase dopamine release in prefrontal cortex and induce immediate early gene expression in prefrontal cortex and nucleus accumbens, the effect of xanomeline was determined on these indices. METHODS: The effect of xanomeline on extracellular levels of monoamines in brain regions was determined using a microdialysis technique, and changes in expression of the immediate early genes c-fos and zif/268 in brain regions were evaluated using in situ hybridization histochemistry. RESULTS: Xanomeline increased extracellular levels of dopamine in prefrontal cortex and nucleus accumbens but not in striatum. Xanomeline increased expression of c-fos and zif/268 in prefrontal cortex and nucleus accumbens. There was no change in immediate early gene expression in striatum. CONCLUSIONS: Xanomeline increased extracellular levels of dopamine, which is similar to the effects of the atypical antipsychotics clozapine and olanzapine. The regional pattern of immediate early gene expression induced by xanomeline resembled that of atypical antipsychotic agents. Based on the antipsychotic-like activity of xanomeline in Alzheimer's patients and the similarity to atypical antipsychotic agents, we suggest that xanomeline may be a novel antipsychotic agent.  相似文献   

9.
Subanesthetic doses of N-methyl- -aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in -2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.  相似文献   

10.
Phencyclidine (PCP), an NMDA antagonist, has been shown to mimic some aspects of schizophrenia including positive, negative and cognitive symptoms. Previous studies in this laboratory have shown a selective reversal-learning deficit following acute PCP administration, a deficit that is attenuated by atypical, but not classical, antipsychotic treatment. However, acute PCP has limitations for modelling the chronic psychotic illness and persistent cognitive deficits observed in many schizophrenic patients. Therefore, the aim of this study was to examine the cognitive deficit induced by PCP over a longer term using a previously established operant reversal-learning procedure. Moreover, the efficacy of the atypical antipsychotics clozapine, ziprasidone and olanzapine to reverse the sub-chronic PCP deficit was compared with that of the classical antipsychotics, haloperidol and chlorpromazine. Female hooded-Lister rats were trained to respond for food using an operant reversal-learning paradigm. When animals achieved criterion of 90% correct responding they were treated with PCP (2mg/kg) or vehicle twice daily for 7 days, and 7 days later tested for their cognitive ability. PCP induced a significant impairment in the reversal phase relative to the initial phase of the task. Acute ziprasidone (2.5mg/kg), olanzapine (1.5mg/kg) and clozapine (5mg/kg) produced a significant attenuation of the impairment induced by sub-chronic PCP in the reversal phase. In marked contrast to these effects, acute administration of the classical agents haloperidol (0.05 mg/kg) and chlorpromazine (2mg/kg) failed to significantly reverse the PCP-induced cognitive impairment. These data clearly demonstrate that sub-chronic PCP produces enduring and persistent cognitive deficits, effects that are significantly attenuated by atypical but not classical antipsychotics.  相似文献   

11.
One of the most consistent findings in postmortem studies of schizophrenia is increased GABAA receptor binding and reduced glutamic acid decarboxylase (GAD67) expression. Due to long-term antipsychotic treatment before death, these findings may reflect not only the consequences of schizophrenia but also medication effects. To differentiate between these options, we used an animal model and evaluated long-term effects of typical (haloperidol) and atypical (clozapine) antipsychotic drugs on the GABAergic system. A total of 33 adult male rats were treated in three cohorts over a period of 6 months. One cohort of 11 animals received clozapine (45 mg/kg/day), another one received haloperidol (1.5 mg/kg/day) and a third one received pH-adapted minimal concentrations of HCl in the drinking water. Receptor autoradiography of the GABAA receptor ([3H]-muscimol binding) and in situ hybridization in adjacent sections with 35S-labeled cRNA probes of the y-aminobutyric acid (GABA)-producing enzyme, GAD67, was performed. While haloperidol increased GABAA receptor binding in striatum and nucleus accumbens (NA), it suppressed GABAA receptor binding in temporal (TEMPC) and parietal (PARC) cortex. Clozapine induced GABAA receptor binding in infralimbic cortex (ILC) and similar like haloperidol in anterior cingulate cortex (ACC), two regions of the limbic cortex. In addition, either drug increased gene expression of GAD67. It is concluded that antipsychotic drugs differentially alter the GABAergic system, strongly suggesting that drug effects are partially responsible for the up-regulation of GABAA receptor binding in certain brain regions as observed in postmortem brains of schizophrenic patients. However, the reduced GAD67 expression seen in postmortem brains does not appear to reflect drug effects, since our animal model demonstrated increased gene expression.  相似文献   

12.
Hypoglutamatergic function may contribute to cognitive impairment in schizophrenia (CIS). Subchronic treatment with the N-methyl-D-aspartate receptor antagonist, phencyclidine (PCP), induces enduring deficits in novel object recognition (NOR) in rodents. Acute treatment with atypical antipsychotic drugs (APDs), which are serotonin (5-HT)(2A)/dopamine D(2) antagonists, but not typical APDs, eg, haloperidol, reverses the PCP-induced NOR deficit in rats. We have tested the ability of lurasidone, an atypical APD with potent 5-HT(1A) partial agonist properties, tandospirone, a selective 5-HT(1A) partial agonist, haloperidol, a D(2) antagonist, and pimavanserin, a 5-HT(2A) inverse agonist, to prevent the development of the PCP-induced NOR deficit. Rats were administered lurasidone (0.1 or 1?mg/kg), tandospirone (5?mg/kg), pimavanserin (3?mg/kg), or haloperidol (1?mg/kg) b.i.d. 30?min before PCP (2?mg/kg, b.i.d.) for 7 days (day1-7), followed by a 7-day washout (day8-14). Subchronic treatment with PCP induced an enduring NOR deficit. Lurasidone (1?mg/kg) but not 0.1?mg/kg, which is effective to acutely reverse the deficit due to subchronic PCP, or tandospirone, but not pimavanserin or haloperidol, significantly prevented the PCP-induced NOR deficit on day 15. The ability of lurasidone co-treatment to prevent the PCP-induced NOR deficit was enduring and still present at day 22. The preventive effect of lurasidone was blocked by WAY100635, a selective 5-HT(1A) antagonists, further evidence for the importance of 5-HT(1A) receptor stimulation in the NOR deficit produced by subchronic PCP. Further study is needed to determine whether these results concerning mechanism and dosage can be the basis for prevention of the development of CIS in at risk populations.  相似文献   

13.
The present study examined the effects of the atypical antipsychotic drugs clozapine, olanzapine, quetiapine and risperidone, on N-methyl-4-phenylpyridinium ion-induced apoptosis and DNA damage in PC12 cells, and explored the molecular mechanisms underlying these effects. Haloperidol, a typical antipsychotic drug, was used for comparison. Exposure of PC12 cells to 50 micro m N-methyl-4-phenylpyridinium ion for 24 h resulted in a 35-45% loss of cells in culture. Pretreatment with the aforementioned atypical antipsychotic drugs significantly reduced the N-methyl-4-phenylpyridinium ion-induced cell loss, whereas haloperidol (10-100 micro m) did not have this protective effect. Hoechst 33258 staining revealed the apoptotic nuclear features of the N-methyl-4-phenylpyridinium ion-induced cell death, and showed that the atypical antipsychotic drugs, but not haloperidol, effectively prevented PC12 cells from this N-methyl-4-phenylpyridinium ion-induced apoptosis. DNA fragmentation assays further confirmed the N-methyl-4-phenylpyridinium ion-induced nuclear fragmentation. Pretreatment with the atypical antipsychotic drugs completely prevented this nuclear fragmentation, whereas haloperidol only partially prevented it. In vitro oligonucleotide assays indicated an activation of a specific glycosylase that recognizes and cleaves bases (at the 8-hydroxyl-2-deoxyguanine site) that were damaged by N-methyl-4-phenylpyridinium ion. Pretreatment with the atypical antipsychotic drugs more effectively attenuated this N-methyl-4-phenylpyridinium ion-induced activation than did haloperidol. Northern blot analyses showed that the atypical antipsychotic drugs, but not haloperidol, blocked the N-methyl-4-phenylpyridinium ion-induced substantial increase of copper/zinc superoxide dismutase mRNA in PC12 cells. Atypical antipsychotic drugs slightly up-regulated the expression of copper/zinc superoxide dismutase mRNA, whereas haloperidol strongly increased the expression of copper/zinc superoxide dismutase mRNA. These data may account for the different therapeutic effects and side-effect profiles of typical and atypical antipsychotic drugs in schizophrenia.  相似文献   

14.
The effect of acute haloperidol administration on Fos protein expression was examined immunohistochemically in discrete regions of the rat brain. Male Wistar rats were injected subcutaneously (s.c.) with 0.1, 0.25, or 1.0 mg/kg of haloperidol. Two h after the injection, the rats were perfused, and the numbers of Fos immunoreactive neurons were counted in 24 brain regions. In contrast to the limited changes in Fos immunoreactivity at the low dose of haloperidol (0.1 mg/kg), the moderate dose (0.25 mg/kg) induced widespread increases in Fos-positive neurons in the rat brain. Large increases were produced in the caudate-putamen, nucleus accumbens, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, hippocampus CA1 and substantia nigra pars compacta. Moderate increases were observed in the entorhinal cortex, lateral septum, lateral habenula, lateral amygdaloid nucleus, dentate gyrus, and mesencephalic central grey. Mild increases were induced in the anterior cingulate, temporal, occipital and perirhinal cortex, and central medial thalamic nucleus. The distribution of changes in Fos immunoreactivity at the high dose of haloperidol (1.0 mg/kg) were comparable to their distribution at the moderate dose. These findings indicate that the effect of acute haloperidol on Fos expression is widely distributed in the rat brain beyond the previously known dopamine-rich areas at the dose which produces plasma levels equivalent to those within the therapeutic range used clinically in humans. Further studies on the effects of chronic antipsychotic treatment are needed in order to identify the sites of the therapeutic action of antipsychotic drugs.  相似文献   

15.
We have previously shown that the orexin-1 antagonist SB-334867 blocks the electrophysiological effects of haloperidol and olanzapine on the activity of A9 and A10 dopamine neurons. To evaluate if orexin-1 antagonists might block other effects of antipsychotic drugs in animals, we examined the effects of SB-334867 on behavioral, neurochemical, and neuroendocrine effects of antipsychotic drugs. Pretreatment with SB-334867 (0.01-10 mg/kg, intraperitoneal [IP]) significantly decreased the catalepsy produced by the administration of haloperidol (1 mg/kg, subcutaneous [SC]), risperidone (2 mg/kg, SC), and olanzapine (10 mg/kg, SC). Administration of SB-334467 also reversed catalepsy after it had been established in animals pretreated 2 hours earlier with haloperidol. However, pretreatment with SB-334867 (1-10 mg/kg, IP) did not block the decreases in exploratory locomotor activity produced by administration of haloperidol (0.1 mg/kg, SC) or risperidone (0.3 mg/kg, SC). In addition, pretreatment with SB-334867 (1-10 mg/kg, IP) neither blocked the increased levels of dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens or striatum nor the elevation in serum prolactin produced by administration of haloperidol (0.1 mg/kg, SC) and risperidone (1 mg/kg, SC). Administration of SB-334867 alone neither changed locomotor activity and DOPAC or prolactin levels nor produced catalepsy. These results show that orexin-1 antagonists block the catoleptogenic effects of antipsychotics but do not block other locomotor, neurochemical, or neuroendocrine effects of antipsychotics. Because catalepsy is thought to be a good predictor of extrapyramidal symptoms in humans, treatment with orexin-1 antagonists might decrease the occurrence or severity of antipsychotic treatment-emergent extrapyramidal symptoms in humans.  相似文献   

16.
The effect of chronic administration of antipsychotic drugs (21 days in drinking water followed by 3 days drug washout) on the D-amphetamine (1.0 mg/kg, s.c.)-induced increase in dopamine (DA) release in the striatum and the nucleus accumbens of awake, freely-moving rats was investigated with microdialysis. Chronic administration of haloperidol, a typical antipsychotic, (0.5 mg/kg/day), decreased basal extracellular DA release in the striatum and the nucleus accumbens but did not affect D-amphetamine-induced DA release in either region. In marked contrast, chronic administration of three atypical antipsychotic drugs: amperozide (2 mg/kg/day), clozapine (10 mg/kg/day) and melperone (2 mg/kg/day) increased basal extracellular DA and enhanced D-amphetamine-induced DA release in the striatum. In the nucleus accumbens, basal extracellular DA was decreased by chronic amperozide, unchanged by chronic clozapine and increased by chronic melperone. Most significantly, D-amphetamine-induced DA release was inhibited by chronic amperozide or clozapine, but unaffected by chronic melperone in this region. These results suggest that atypical antipsychotic drugs can alter DA release in a region specific manner. In particular, attenuation of amphetamine-like stimulation of DA release with reduced basal DA release in the nucleus accumbens could contribute to the antipsychotic action of amperozide which has a very weak affinity for D2 DA receptors.  相似文献   

17.
The non-competitive NMDA receptor antagonists, PCP (phencyclidine), MK801, and ketamine produce psychosis in humans and abnormal vacuoles in posterior cingulate and retrosplenial rat cortical neurons. We show that PCP (> or = 5 mg/kg), MK801 (> or = 0.1 mg/kg), and ketamine (> 20 mg/kg) induce hsp70 mRNA and HSP70 heat shock protein in these vacuolated, injured neurons, and PCP also induces hsp70 in injured neocortical, piriform, and amygdala neurons. The PCP, MK801, and ketamine drug induced injury occurs in 30 day and older rats, but not in 0-20 day old rats, and is prevented by prior administration of the antipsychotic drugs haloperidol and rimcazole. Since haloperidol and rimcazole block dopamine and sigma receptors, and since M1 muscarinic cholinergic receptor antagonists also prevent the injury produced by PCP, MK801, and ketamine, future studies will be needed to determine whether dopamine, sigma, M1, or other receptors mediate the injury.  相似文献   

18.
Changes in GABAA receptors are observed in schizophrenia, with benzodiazepine-sensitive GABAA receptor subtypes being affected differently to other subtypes. However, long-term antipsychotic drug use in schizophrenia may underlie these changes. To test this, we examined the effects of administering a typical (haloperidol) and an atypical (olanzapine) antipsychotic drug on the GABAA receptor agonist (orthosteric) and benzodiazepine (allosteric) binding sites in rat prefrontal cortex. As antipsychotic drugs have delayed maximal therapeutic effects we also examined different drug treatment periods. Male SD rats received a sucrose solution containing either haloperidol (1.5 mg/kg), olanzapine (6.5 mg/kg) or no drug daily for either 7, 14 or 28 days. Sections of rat brain were then labelled with [3H]muscimol, which labels the total population of GABAA receptors, or the benzodiazepine site ligand [3H]flunitrazepam in separate saturation binding experiments using quantitative receptor autoradiography. [3H]Muscimol binding was enhanced in the prefrontal cortex after 7 days but no differences were observed after longer periods of drug administration. In contrast there was a delayed increase in density of benzodiazepine-sensitive GABAA receptors in the PFC, suggesting that antipsychotic drugs have different effects on different GABAA receptor subtypes. These changes in the properties of GABAA receptor binding following antipsychotic drug administration are not consistent with those observed in schizophrenia and suggest a ‘reshuffling’ in GABAA receptor subtypes over time.  相似文献   

19.
Olanzapine, an atypical antipsychotic, has a broad receptor binding profile, which may account for its pharmacological effects in schizophrenia. In vitro receptor binding studies showed a high affinity for dopamine D2, D3, and D4 receptors; all 5-HT2 receptor subtypes and the 5-HT6 receptor; muscarinic receptors, especially the M1 subtype: and alpha 1-adrenergic receptors. In vivo studies showed that olanzapine had potent activity at D2 and 5-HT2A receptors, but much less activity at D1 and muscarinic receptors, and that it inhibited dopaminergic neurons in the A10 but not the A9 tract, suggesting that this agent will not cause extrapyramidal side-effects (EPS). Microdialysis studies showed that olanzapine increased the extracellular levels of norepinephrine and dopamine, but not 5-HT, in the prefrontal cortex, and increased extracellular dopamine levels in the neostriatum and nucleus accumbens, areas of the brain associated with schizophrenia. Studies of gene expression showed that olanzapine 10 mg/kg also increased Fos expression in the prefrontal cortex, the dorsolateral striatum, and the nucleus accumbens. These findings are consistent with the effectiveness of olanzapine on both negative and positive symptoms and suggest that, with careful dosing, olanzapine should not cause EPS.  相似文献   

20.
Chronic antipsychotic drugs treatment may regulate the expression of a variety of genes in the brain, which may underscore their clinical efficacy and/or side effects. In this study, we measured the mRNA levels of three genes encoding the catabolic enzymes of biogenic amine neurotransmitters, i.e., monoamine oxidase A (MAOA), B (MAOB) and catechol O-methyltransferase (COMT), in rat frontal cortex following 4 weeks' treatment of various antipsychotic drugs using quantitative PCR. Significantly elevated mRNA levels of MAOB and COMT were first observed in frontal cortex of rats treated with risperidone (1mg/kg) when compared to control animals. Further study showed that chronic treatment of olanzapine (2mg/kg), but not haloperidol (1mg/kg) or clozapine (20mg/kg), resulted in significantly increased mRNA levels of MAOA, MAOB and COMT in rat frontal cortex as compared to control animals. These results indicate that chronic treatment of different antipsychotic drugs may differentially regulate the gene expression of three catabolic enzymes of biogenic amine neurotransmitters, and which may partly account for the molecular mechanism of their different clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号