首页 | 本学科首页   官方微博 | 高级检索  
检索        


The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis
Authors:Qing Hong  Xu Haiyun  Wei Zelan  Gibson Kurt  Li Xin-Min
Institution:Neuropsychiatric Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada.
Abstract:The present study examined the effects of the atypical antipsychotic drugs clozapine, olanzapine, quetiapine and risperidone, on N-methyl-4-phenylpyridinium ion-induced apoptosis and DNA damage in PC12 cells, and explored the molecular mechanisms underlying these effects. Haloperidol, a typical antipsychotic drug, was used for comparison. Exposure of PC12 cells to 50 micro m N-methyl-4-phenylpyridinium ion for 24 h resulted in a 35-45% loss of cells in culture. Pretreatment with the aforementioned atypical antipsychotic drugs significantly reduced the N-methyl-4-phenylpyridinium ion-induced cell loss, whereas haloperidol (10-100 micro m) did not have this protective effect. Hoechst 33258 staining revealed the apoptotic nuclear features of the N-methyl-4-phenylpyridinium ion-induced cell death, and showed that the atypical antipsychotic drugs, but not haloperidol, effectively prevented PC12 cells from this N-methyl-4-phenylpyridinium ion-induced apoptosis. DNA fragmentation assays further confirmed the N-methyl-4-phenylpyridinium ion-induced nuclear fragmentation. Pretreatment with the atypical antipsychotic drugs completely prevented this nuclear fragmentation, whereas haloperidol only partially prevented it. In vitro oligonucleotide assays indicated an activation of a specific glycosylase that recognizes and cleaves bases (at the 8-hydroxyl-2-deoxyguanine site) that were damaged by N-methyl-4-phenylpyridinium ion. Pretreatment with the atypical antipsychotic drugs more effectively attenuated this N-methyl-4-phenylpyridinium ion-induced activation than did haloperidol. Northern blot analyses showed that the atypical antipsychotic drugs, but not haloperidol, blocked the N-methyl-4-phenylpyridinium ion-induced substantial increase of copper/zinc superoxide dismutase mRNA in PC12 cells. Atypical antipsychotic drugs slightly up-regulated the expression of copper/zinc superoxide dismutase mRNA, whereas haloperidol strongly increased the expression of copper/zinc superoxide dismutase mRNA. These data may account for the different therapeutic effects and side-effect profiles of typical and atypical antipsychotic drugs in schizophrenia.
Keywords:antipsychotics  cell culture  cell death  DNA fragmentation
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号