首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The non-competitive NMDA receptor antagonists, PCP (phencyclidine), MK801, and ketamine produce psychosis in humans and abnormal vacuoles in posterior cingulate and retrosplenial rat cortical neurons. We show that PCP (> or = 5 mg/kg), MK801 (> or = 0.1 mg/kg), and ketamine (> 20 mg/kg) induce hsp70 mRNA and HSP70 heat shock protein in these vacuolated, injured neurons, and PCP also induces hsp70 in injured neocortical, piriform, and amygdala neurons. The PCP, MK801, and ketamine drug induced injury occurs in 30 day and older rats, but not in 0-20 day old rats, and is prevented by prior administration of the antipsychotic drugs haloperidol and rimcazole. Since haloperidol and rimcazole block dopamine and sigma receptors, and since M1 muscarinic cholinergic receptor antagonists also prevent the injury produced by PCP, MK801, and ketamine, future studies will be needed to determine whether dopamine, sigma, M1, or other receptors mediate the injury.  相似文献   

2.
BACKGROUND: N-Methyl-D-aspartate (NMDA) receptor antagonists, including phencyclidine (PCP) and dizocilpine (MK801), cause schizophrenialike psychosis in humans, and produce vacuolated neurons in the cingulate and retrosplenial cortices of the rat brain. Since psychotically depressed patients and schizophrenic depressed patients may require treatment with selective serotonin reuptake inhibitors (SSRIs), it is of interest to examine the relationship between SSRIs and NMDA antagonist neurotoxicity. METHODS: The neurotoxicity of PCP and MK801 was assessed using heat shock protein (HSP70) immunocytochemistry and HSP70 Western blots because HSP70 is expressed in the injured, vacuolated neurons. Female rats were given fluoxetine (0, 5, 10, and 20 mg/kg IP) followed 1 hour later by MK801 (1 mg/kg IP) or PCP (50 mg/kg IP). RESULTS: Pretreatment with fluoxetine (20 mg/kg IP) 1 hour before MK801 prevented the induction of HSP70 by MK801 in the cingulate and retrosplenial cortices. Pretreatment with fluoxetine (10 or 20 mg/kg IP) 1 hour before PCP also prevented the HSP70 induction by PCP. CONCLUSIONS: Fluoxetine prevents the neurotoxicity of NMDA receptor antagonists in rat brain. This suggests the possibility that SSRIs could modulate psychosis, and may provide a model for examining the link between the hallucinogenic properties of PCP and lysergic acid diethylamide.  相似文献   

3.
High-affinity N-methyl-d-aspartate (NMDA) receptor antagonists like MK-801 are known to induce the heat shock. protein, HSP70, in the posterior cingulate cortex and retrosplenial cortex of rat brain. Memantine, which is a low affinity uncompetitive NMDA receptor antagonist, has been used in the treatment of Parkinson's disease in Europe. The faster kinetics of memantine in blocking and unblocking the NMDA receptor-operated ion channel as opposed to high-affinity NMDA antagonists like MK-801 has been thought to account for the safety of memantine. The present study evaluated the neurotoxic potential of memantine and amantadine using the induction of HSP70 immunoreactivity in rat brain. Memantine (25, 50, 75 mg/kg) induced HSP70 in the posterior cingulate, retrosplenial cortex and dentate gyrus of rat brain. In contrast, amantadine (50, 100, 200 mg/kg) did not induce HSP70 in the rat brain. These results suggest that memantine has an antagonistic effect at NMDA receptor in vivo, and raises the possibility that high doses of memantine may cause neuronal damage similar to those observed with other high-affinity NMDA receptor antagonists.  相似文献   

4.
MK-801 and ketamine are noncompetitive N-methyl-D-aspartate (NMDA) receptor blockers that decrease brain injury in animal models of focal and global ischemia. Recent reports, however, suggested that MK-801 itself can damage neurons. Here we show that MK-801 (0.1 to 5.0 mg/kg) and ketamine (40 to 100 mg/kg) typically induce heat shock protein HSP72 mainly in layer 3 neurons of the posterior cingulate and retrosplenial cortex of the rat. These HSP72-immunoreactive neurons contain abnormal cytoplasmic vacuoles visualized by electron microscopy. The HSP72 immunoreactivity is maximal at 24 hours with 1.0-mg/kg doses of MK-801 and disappears by 2 weeks. Based on these data, we propose: (1) MK-801 and ketamine injure selected neurons, which express HSP72 in response to that injury. (2) Since HSP72 is induced for 1 to 2 weeks, the prolonged psychological side effects of MK-801, ketamine, phencyclidine, and related drugs could be related to this injury. (3) The neuroprotective effect of MK-801 is probably not related to HSP72 induction. (4) HSP72 immunocytochemistry is useful for studying nonlethal neuronal injury from a wide variety of brain insults.  相似文献   

5.
Non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, ketamine, phencyclidine (PCP) and dizocilpine (MK-801), produce psychosis in people. In rodents they produce cytoplasmic vacuoles in injured retrosplenial cortical neurons that express HSP70 heat shock protein. This study examined possible circuits and receptors that mediate this neuronal injury. Bilateral, but not unilateral, injection of dizocilpine (5, 10, 15, 20 microg/microL per side) into the anterior thalamus induced HSP70 protein in pyramidal neurons in deep layer III of rat retrosplenial cortex 24 h later. In contrast, bilateral dizocilpine injections (5, 10, 15, 20 microg/microL per side) into the retrosplenial cortex or into the diagonal band of Broca did not induce HSP70. Bilateral injections of muscimol (0.1, 1, 10 microg/microL per side), a GABAA (gamma-aminobutyric acid) agonist, into the anterior thalamus blocked HSP70 induction in the retrosplenial cortex produced by systemic dizocilpine (1 mg/kg). Bilateral thalamic injections of baclofen (0.1, 1, 10 microg/microL per side), a GABAB agonist, were ineffective. Anterograde tracer studies confirmed that neurons in the anterior thalamus project to superficial layer III of the retrosplenial cortex where the dendrites of HSP70-immunostained neurons in deep layer III reside. Bilateral blockade of NMDA receptors on GABA neurons in the reticular nuclei of the thalamus is proposed to decrease GABA neuronal firing, decrease GABA release and decrease activation of GABAA receptors. This activates thalamic projection neurons that damage retrosplenial cortical neurons presumably via unblocked cortical glutamate alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and kainate receptors. The increases of blood flow that occur in the thalamus and retrosplenial cortex of people that have psychosis produced by NMDA antagonists could be related to thalamic excitation of the retrosplenial cortex produced by these drugs.  相似文献   

6.
Phencyclidine and other N-methyl-d -aspartate receptor antagonists are toxic to pyramidal neurons in the posterior cingulate/retrosplenial cortex of rat brain. Previous studies have shown induction of heat shock protein 70 in affected neurons. In this study, expression of haem oxygenase-1, a heat shock protein induced by oxidative stress, was examined in rat forebrain after administration of a single intraperitoneal dose of phencyclidine (50 mg/kg). Northern and Western blot analyses of brain tissue extracts from phencyclidine-treated rats revealed a marked induction of haem oxygenase-1 mRNA and protein, respectively. Immunohistochemistry studies revealed that phencyclidine increased haem oxygenase-1 immunoreactivity primarily in posterior cingulate/retrosplenial, piriform and entorhinal cortices, striatum and hippocampus. Haem oxygenase-1 protein was induced in non-neuronal cells, mainly astrocytes. Some microglia expressing haem oxygenase-1 protein were also found in the posterior cingulate/retrosplenial cortex. Haem oxygenase-1 immunoreactive astrocytes and microglia were present in close proximity to the heat shock protein 70-positive neurons in the posterior cingulate/retrosplenial cortex following phencyclidine. Pretreatment of rats with 1,3-dimethylthiourea, an antioxidant, significantly reduced haem oxygenase-1 protein induction by phencyclidine. Thus, induction of haem oxygenase-1 in glia by phencyclidine appears to be mediated mostly by oxidative stress. Experiments with the amino cupric silver stain for neuronal degeneration revealed phencyclidine-induced neurotoxicity in the posterior cingulate/retrosplenial cortex. The number of affected neurons was significantly reduced after 1,3-dimethylthiourea pretreatment. This suggests that the neurotoxicity of N-methyl-d -aspartate antagonists is due in part to the oxidative stress and may be amenable to therapeutic interventions.  相似文献   

7.
The effect of atypical antipsychotics on the immediate-early gene, arc (activity-regulated cytoskeleton-associated gene), expression was investigated in phencyclidine (PCP)-treated rats using RT-PCR. Administration of PCP (10 mg/kg) increased arc mRNA levels in the prefrontal cortex, nucleus accumbens and posterior cingulate cortex. Pretreatment with clozapine (20 mg/kg), olanzapine (10 mg/kg) and risperidone (2 mg/kg), but not haloperidol (2 mg/kg), prevented PCP-induced arc expression in the prefrontal cortex and nucleus accumbens. Pretreatment of haloperidol increased the striatal arc mRNA levels. Clozapine, olanzapine and haloperidol inhibited the PCP-induced arc expression in the posterior cingulate cortex. These results suggest that the effects of antipsychotic drugs on PCP-induced arc expression in the prefrontal cortex and nucleus accumbens are useful for distinguishing atypical antipsychotic properties of the drugs.  相似文献   

8.
The neurotransmitter glutamate activates the N-methyl-D-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist DL-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

9.
Antagonists at the N-methyl-D-aspartate (NMDA)-type glutamate receptor, such as phencyclidine (PCP) and dizocilpine (MK-801), are well-known to evoke increases in locomotor activity in adult rats and mice. However, little is known about the effects of NMDA antagonists on locomotor activity as a function of development. The present study examined locomotor responses to PCP or MK-801 in male rats of varying ages and found that prepubertal rats were more sensitive to the locomotor-elevating effects of PCP (1.5 mg/kg and 3. 0 mg/kg, s.c.) than were adults. Locomotor responses to MK-801 (0.1 and 0.2 mg/kg, s.c.) were not dependent on age. The age-dependent response to PCP may be related to developmental events in the motor cortex, since more Fos-immunoreactive neurons were observed in the motor cortex of prepubertal animals after PCP administration relative to adult animals. An opposite pattern of age-dependent Fos responses was observed in the posterior retrosplenial cortex. The results suggest that locomotor responses to NMDA antagonists can be influenced in an age- and drug-dependent manner and that maturational events in the motor cortex may modify responses to PCP.  相似文献   

10.
Phencyclidine (PCP) can result in schizophrenia-like behavior. It binds at the PCP site on the NMDA-receptor calcium channel and at the sigma receptor. PCP also induces the heat shock gene hsp70 in retrosplenial cortex neurons. An antipsychotic drug, rimcazole, inhibits PCP hsp70 induction. Rimcazole binds predominately to sigma-2 sites. It is hypothesized that sigma ligands without antipsychotic properties and with some sigma-2 affinity should partially reverse the effects of rimcazole. (+)-3-PPP, (+)-cyclazocine, and (+)-pentazocine bind predominately to sigma-1 sites. (+)-3-PPP is also a modest sigma-2 ligand. Female Sprague-Dawley rats (200–260 g) were injected intraperitoneally (IP) with (+)-3-PPP (50 mg/kg), rimcazole (60 mg/kg) and, after 5 min, with PCP (40 mg/kg). Brains were sectioned (100 μm) and presence of the hsp70 gene protein product, HSP70, was determined immunocytochemically. (+)-3-PPP significantly (p < 0.05) diminished the ability of rimcazole to inhibit PCP hsp70 induction in the retrosplenial cortex. (+)-Cyclazocine (15mg/kg, IP) and (+)-pentazocine (80mg/kg, IP) given in an analogous manner did not diminished the ability of rimcazole to inhibit PCP hsp70 induction.  相似文献   

11.
The neurotransmitter glutamate activates the N-methyl-d-aspartate (NMDA), quisqualate and kainate receptors. It has been proposed, but also disputed, that local release of glutamate would play a pivotal role in cortical spreading depression (SD). We tested this hypothesis by investigating the influence of NMDA antagonists on SD, using the non-competitive NMDA antagonists ketamine, phencyclidine (PCP) and MK-801 and the competitive NMDA antagonist dl-2-amino-7-phosphonoheptanoate (2-APH), injected intraperitoneally in rats anesthetized with alfentanil. SD was elicited by cathodal DC-stimulation of the frontal cortex. SD propagation was followed using two ion-sensitive microelectrodes placed in the parietal and occipital cortex. The NMDA antagonists increased SD threshold, decreased the propagation velocity and decreased the duration of the accompanying extracellular DC, K+ and Ca2+ changes at the following doses: 40 mg/kg ketamine, 10 mg/kg PCP, 0.63 mg/kg MK-801, 10 and 40 mg/kg 2-APH. With each NMDA antagonist failure of SD propagation between both microelectrodes could be observed. SD elicitation (or propagation) was inhibited completely with 80 mg/kg ketamine, 3.1 mg/kg MK-801 and 160 mg/kg 2-APH. These NMDA antagonists have also anticonvulsant properties. None of these effects on SD were observed with high doses of other anticonvulsants such as 80 mg/kg phenytoin or 40 mg/kg diazepam. These experiments indicate that endogenous release of excitatory amino acids and their action on the NMDA receptor play an important role in the initiation, propagation and duration of SD.  相似文献   

12.
N-methyl-D-aspartate (NMDA) glutamate (Glu) receptor antagonists (eg MK-801, ketamine, phencyclidine [PCP]) injure cerebrocortical neurons in the posterior cingulate and retrosplenial cortex (PC/RSC). We have proposed that the neurotoxic action of these agents is mediated in part by a complex polysynaptic mechanism involving an interference in GABAergic inhibition resulting in excessive release of acetylcholine (ACh). Previously we have found that the systemic injection of GABAergic agents and alpha2-adrenergic agonists can block this neurotoxicity. In the present study we tested the hypothesis that NMDA antagonists trigger release of ACh in PC/RSC and that this action of NMDA antagonists is suppressed by GABAergic agents or alpha2-adrenergic agonists. The effect of MK-801 and ketamine on PC/RSC ACh output (and the ability of pentobarbital, diazepam and clonidine to modify MK-801-induced ACh release) was studied in adult female rats using in vivo microdialysis. Both MK-801 and ketamine caused a significant rise in PC/RSC ACh output compared to basal levels. Pentobarbital, diazepam and clonidine suppressed MK-801's effect on ACh release. Exploratory studies indicated that the site of action of these agents was outside of the PC/RSC. The microdialysis results are consistent with several aspects of the circuitry proposed to mediate the neurotoxic action of NMDA antagonists.  相似文献   

13.
Dextromethorphan is a widely used antitussive agent, also showing increased recreational abuse. Dextromethorphan and its metabolite dextrorphan are non-competitive antagonists at the N-methyl-d-aspartate (NMDA) receptor ion channel. Single doses of some NMDA receptor antagonists produce neuropathologic changes in neurons of the retrosplenial/posterior cingulate cortices (RS/PC), characterized by vacuolation or neurodegeneration. To determine whether dextromethorphan produces these characteristic lesions, dextromethorphan was administered orally either as a single dose of 120mg/kg to female rats, or daily for 30 days at doses of 5-400 mg/(kg day) to male rats and 5-120mg/(kg day) to female rats. Brains were examined microscopically for evidence of neuronal vacuolation (4-6h postdose) and neurodegeneration ( approximately 24 or 48h postdose). Administration of dextromethorphan at 120mg/(kg day) in females, and at > or =150mg/(kg day) in males produced marked behavioral changes, indicative of neurologic effects. Mortality occurred at the highest doses administered. There were no detectable neuropathologic changes following single or repeated oral administration of dextromethorphan at any dose. Administration of MK-801 (9mg/kg) produced both cytoplasmic vacuolation and neuronal degeneration in neurons of the RS/PC cortex. Thus characteristic neuropathologic changes found with more potent NMDA receptor antagonists do not occur following single or repeated oral administration of dextromethorphan.  相似文献   

14.
ACEA 1021 is a potent, selective N-methyl-

-aspartate (NMDA) receptor glycine site antagonist under clinical evaluation as a neuroprotectant for stroke and head trauma. The potential of ACEA 1021 to produce morphologic changes in cerebrocortical neurons of the rat was assessed since it is known that noncompetitive (e.g., MK-801) and competitive (e.g., CGS 19755) NMDA receptor antagonists produce neuronal vacuolization and necrosis in the rat posterior cingulate/retrosplenial cortex. Male and female adult rats were treated intravenously with either vehicle (Tris) or 10 mg/kg or 50 mg/kg ACEA 1021. MK-801 (5 mg/kg, s.c.) served as positive control. Whereas MK-801 produced characteristic neuronal vacuolization and necrosis in the posterior cingulate/retrosplenial cortex, neither dose of ACEA 1021 had any effect on neuronal morphology. The absence of neuropathological changes in rats supports the further clinical evaluation of ACEA 1021 for stroke and head trauma, and suggests that glycine site antagonists may be devoid of neurotoxic potential.  相似文献   

15.
The non-competitive NMDA receptor antagonists, such as (+)-MK-801 (dizocilpine), cause the expression of heat shock protein HSP-70 and pathomorphological damage in the retrosplenial cortex of the rat brain. However, the precise mechanism(s) underlying the neurotoxicity of NMDA receptor antagonists is unknown. The present study was undertaken to examine the role of phosphodiesterase type IV in the expression of heat shock genes induced by dizocilpine. Heat shock protein HSP-70, which is known as a sensitive marker of neuron injury, was induced in the retrosplenial cortex of the rat brain 24 h after a single administration of dizocilpine (1 mg/kg). Pretreatment with the specific phosphodiesterase type IV inhibitor rolipram (2.5, 5 or 10 mg/kg, 15 rnin before dizocilpine) attenuated the expression of HSP-70 and hsp-70 mRNA induced by dizocilpine (1 mg/kg) in a dose-dependent manner. Furthermore, another phosphodiesterase type IV inhibitor, Ro 20–1724 (5 or 10 mg/kg, 15 min before dizocilpine), and a non-selective phosphodiesterase inhibitor, 3–isobutyl-1–methylxanthine (IBMX) (5 or 10 mg/kg, 15 min before dizocilpine), significantly attenuated the expression of HSP-70 protein and hsp-70 mRNA induced in the retrosplenial cortex by dizocilpine. However, the induction of the immediate early gene c-fos and microglial activation in the retrosplenial cortex after administration of dizocilpine was not attenuated by pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine). Moreover, histopathological study indicated that pretreatment with rolipram (5 or 10 mg/kg, 15 min before dizocilpine) did not prevent the formation of vacuoles caused by treatment with dizocilpine. The present findings suggest that phosphodiesterase type IV may play a significant role in the expression of HSP-70 protein and hsp-70 mRNA in the rat retrosplenial cortex after administration of dizocilpine, and that phosphodiesterase type IV may not play a role in the neurotoxicity of NMDA receptor antagonists such as dizocilpine.  相似文献   

16.
The effect of NMDA receptor antagonist phencyclidine (PCP) on expression of cyclooxygenase (COX)-2 mRNA in the rat brain was studied. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 h) caused marked induction of COX-2 mRNA and heat shock gene hsp-70 mRNA, a marker of neuronal injury, in the retrosplenial cortex, in a dose-dependent manner. These results suggest that COX-2 may play a role in the neurotoxicity of NMDA receptor antagonists.  相似文献   

17.
Phencyclidine (PCP) has been shown to cause neurotoxicity in rat retrosplenial cortex following a single administration, although the precise mechanism underlying PCP-induced neurotoxicity is unclear. Using in situ hybridization and immunohistochemistry, we studied the effects of PCP on expression of immediate early gene zif268 mRNA and zif268 protein in the rat brain. High constitutive levels of zif268 mRNA and zif268 immunoreactivity were observed in the brain of control rats. Administration of PCP (12.5, 25 or 50 mg/kg, i.p., 6 h) caused marked induction of zif268 mRNA in the rat retrosplenial cortex, in a dose-dependent manner. However, the basal levels of zif268 mRNA in the other regions of cerebral cortex were decreased by administration of PCP. Emulsion-autoradiographical study suggested that marked expression of zif268 mRNA was observed in the layers III and IV of retrosplenial cortex where the neurotoxicity of PCP was detected. Furthermore, zif268 immunoreactivity in the layer IV of retrosplenial cortex was not changed by administration of PCP (25 mg/kg, i.p., 5 h), but that in the other layers of retrosplenial cortex was reduced by PCP. These results suggest that immediate early gene zif268 may, in part, play a role in the neurotoxicity of NMDA receptor antagonists such as PCP.  相似文献   

18.
Phencyclidine (PCP) has recently been shown to induce apoptosis of a subpopulation of striatopallidal neurons which lie in the dorsomedial caudate-putamen. The pharmacological mechanisms underlying this PCP-induced striatal death were investigated in a series of small experiments. Striatal silver-methenamine-stained sections from rats injected acutely with dizocilpine (MK-801; 1.5-5 mg/kg, i.p.) were analysed to determine whether other non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists could induce apoptotic-like changes in striatal cells. The effects of amphetamine (3-12 mg/kg, i.p.) were similarly investigated as PCP can elevate extracellular dopamine levels and dopamine has the potential to be neurotoxic. The potential involvement of dopamine transmission in PCP-induced striatal apoptosis was also tested by determining the effect of co-administering SCH23390 (D1 dopamine receptor antagonist) and quinpirole (D2 dopamine receptor agonist) on PCP (80 mg/kg, s.c.)-induced striatal apoptotic-like cell death. Equivalent experiments were performed using scopolamine (cholinergic antagonist) as this drug blocks PCP-induced damage of the retrosplenial cortex and RU38486 (corticosteroid receptor antagonist) as a similar subpopulation of striatal neurons undergoes apoptosis following dexamethasone administration. Injection of neither MK-801 nor amphetamine induced elevations of apoptotic-like cells in the striatum nor did co-administration of SCH23390 or scopolamine affect the levels of PCP-induced striatal cell death. In contrast, quinpirole elevated the levels of PCP-induced apoptotic-like striatal cell death and RU38486 markedly reduced it. Within the retrosplenial cortex, scopolamine lowered PCP-induced apoptotic-like cell death whereas RU38486 was without effect. These results suggest that PCP-induced striatal apoptosis results from a corticosteroid-dependent mechanism. The results further demonstrate that different pathological mechanisms underlie PCP-induced neuronal damage in the striatum and the retrosplenial cortex.  相似文献   

19.
The effects of different doses of ketamine on acoustic evoked responses were studied in four brain sites in freely behaving rats. Permanent semimicroelectrodes (60 μm in diameter) were implanted stereotaxically under pentobarbital anesthesia within the inferior colliculus, the primary relay site for acoustic input; within the mesencephalic reticular formation; in the ventromedial hypothalamus; and within the somatosensory cortex. After recovery from surgery (6 to 8 days), the averaged acoustic field potentials following 32 repetitive stimuli were averaged to one trace. Four traces were recorded at 10-min intervals before and after each injection. Ten doses of ketamine were studied (1, 5, 10, 20, 40, 60, 80, 100, 120, and 140 mg/kg ip). The dose which induced surgical anesthesia was found to be 80 mg/kg ip. Differences in the number of cases in which ketamine induced changes in sensory field potentials were observed between structures. The evoked responses in the somatosensory cortex exhibited dose-dependent changes. The lower doses of ketamine below the anesthetic dose (80 mg/kg) induced depression of the responses, whereas higher doses (100 to 140 mg/kg) induced increases in the response amplitudes, shifted the amplitude to the right (long latency), and prolonged the duration of the responses. However, the responses in the sensory relay nuclei were affected by the initial dose of 1 mg/kg and remained about constant following the remaining doses. The reticular formation and ventromedial hypothalamus were affected differently by ketamine. There was demonstrated the possibility that acoustic evoked responses from the somatosensory cortex can be used as an indication of the level of ketamine anesthesia.  相似文献   

20.
Subanesthetic doses of N-methyl- -aspartate (NMDA) receptor antagonists such as ketamine and phencyclidine precipitate psychotic symptoms in schizophrenic patients. In addition, these drugs induce a constellation of behavioral effects in healthy individuals that resemble positive, negative, and cognitive symptoms of schizophrenia. Such findings have led to the hypothesis that decreases in function mediated by NMDA receptors may be a predisposing, or even causative, factor in schizophrenia. The present study examined the effects of the representative atypical (clozapine) and typical (haloperidol) antipsychotic drugs on ketamine- induced increases in -2-deoxyglucose (2-DG) uptake in the rat brain. As previously demonstrated, administration of subanesthetic doses of ketamine increased 2-DG uptake in specific brain regions, including medial prefrontal cortex, retrosplenial cortex, hippocampus, nucleus accumbens, basolateral amygdala, and anterior ventral thalamic nucleus. Pretreatment of rats with 5 or 10 mg/kg clozapine alone produced minimal or no change in 2-DG uptake, yet clozapine completely blocked ketamine-induced changes in 2-DG uptake in all brain regions studied. In striking contrast, a dose of haloperidol (0.5 mg/kg) that produces a substantial cataleptic response, potentiated, rather than blocked, ketamine-induced activation of 2-DG uptake. These results demonstrate, in a model with potential relevance to schizophrenia, a striking neurobiological difference between the actions of prototypical typical and atypical antipsychotic drugs. The dramatic blockade by clozapine of ketamine-induced brain metabolic activation suggests that antagonism of the consequences of reduced NMDA receptor function could contribute to the superior therapeutic effects of this atypical antipsychotic agent. The results also suggest that this model of ketamine-induced alterations in 2-DG uptake may be extremely useful for understanding the complex neural mechanisms of atypical antipsychotic drug action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号